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Machine Learning in Materials Simulations

Machine learning: A statistical model is built based on available 
“training” data to predict the results of future experiments 

Applications in computational materials science: 
• Machine learned inter-atomic potentials
• Machine learned DFT functionals
• Clustering
• Identifying correlations in data
• Feature selection
• Property prediction
• Optimization (e.g., Bayesian optimization)

The application of ML models in materials 
simulations is usually not “black box” and 

some customization is required

Ingredients: 
• Training data
• Representation
• Model type
• Model hyperparameters
• Validation

ML models can 
only interpolate, 
not extrapolate

It may be challenging 
to learn from “small 
data”. Incorporating 
physical knowledge 

into models can help



A Machine 
Learned Model 
for Molecular 

Crystal Volume 
Estimation



Molecular Crystals

Weak dispersion (van der Waals) interactions
produce potential energy landscapes with many 
local minima close in energy

Aspirin crystal

Polymorphs may have different physical/chemical properties!

The challenge: given a 2D stick 
diagram of a molecule, predict 
all of its possible polymorphs

Molecular crystals often exhibit polymorphism, 
the ability of the same molecule to crystallize in several structures

Requires searching a 
high-dimensional space 

with a high accuracy

Used for e.g., pharmaceuticals, organic electronics



Molecular Solid Form Volume

The molecular solid form volume is the 
effective volume occupied by a molecule 
in a crystal:

𝑉𝑀 =
𝑉𝑐𝑒𝑙𝑙
𝑍

R. Tom, T. Rose, I. Bier, H. O’Brien, A. Vazquez-Mayagoitia, 
and N. Marom, Comput. Phys. Commun. 250, 107170 (2020)

Crystal structure prediction workflows 
often begin by estimating the solid form 
volume to define the search space

Workflow of the Genarris random 
structure generator for molecular crystals

We developed a machine learned 
model to predict VM, given the 
single molecule structure



ML Model for Volume Estimation: Training Data

The performance of ML models depends 
on the quality of the training data

The data should be consistent and reliable

A set of polymorphic crystal 
structures characterized in 
ambient temperature and 
pressure conditions was 
extracted from CSD 2019

Porous structures were 
removed 

Problems, such as 
discrepancies in Z values 
and chemical formula 
were corrected 

I. Bier and N. Marom, J. Phys. 
Chem. A 124, 10330 (2020)



ML Model for Volume Estimation: Training Data

The final training set contained 2,472 unique pairs of polymorphs

The standard deviation of the percent density difference between polymorphs 
may be considered as a lower bound for the error of a ML model

I. Bier and N. Marom, J. Phys. Chem. A 124, 10330 (2020)



ML Model for Volume Estimation: Model Features

The ML model is based on a combination of geometric and chemical descriptors 
that capture the salient features of molecular crystals

Geometric 
descriptor: volume 
enclosed by the 
packing accessible 
surface

Surface of 
vdW spheres

Packing-
accessible 
surface

Chemical 
descriptor: 
molecular 
topological 
fragments

I. Bier and N. Marom, J. Phys. Chem. A 124, 10330 (2020)



ML Model for Volume Estimation: Model Training

The ML model has three hyper-parameters:
• Number of molecular topological fragments
• Probe radius for packing-accessible surface construction, α
• Ridge regression regularization parameter, λ

• The parameters were optimized by a 3D grid search over 54,810 combinations
• 10-fold cross validation was performed for each set of parameters
• Optimal values found: 2,231 fragments; α = 3 Å;  λ = 10

The predicted solid form volume is given by:

The coefficients are found by minimizing 
the ridge regression loss function:
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I. Bier and N. Marom, J. Phys. Chem. A 124, 10330 (2020)



ML Model for Volume Estimation: Results

The model performs well for the training set and three sets of 
unseen data with errors below the presumed lower bound

Training set

Unseen data

Unseen data

Unseen data

I. Bier and N. Marom, J. Phys. Chem. A 124, 10330 (2020)



ML Model for Volume Estimation: Results

The volume enclosed by the packing-
accessible surface captures the effect of 
sterically hindered regions and voids

vdW surface

Packing-accessible surface

I. Bier and N. Marom, J. Phys. Chem. A 124, 10330 (2020)



ML Model for Volume Estimation: Results

A model based only on the volume enclosed by 
the packing-accessible surface, without chemical 
information, has a broader error distribution

Volume only

Outliers include materials with strong attractive  
interactions, such as H-bonds, repulsive groups, 
such as halogens, N lone-pairs, and alkyl side 
chains

Volume + Fragments

I. Bier and N. 
Marom, J. Phys. 
Chem. A 124, 
10330 (2020)



ML Model for Volume Estimation: Results

Volume + Fragments

Fragments only

A model based only on topological fragments, 
without volume information has a broader 
error distribution

Outliers have sterically hindered regions, groups 
that do not participate in intermolecular 
interactions, or conformational polymorphs

Including both 
geometric and 

chemical 
information is 

essential to the 
performance of 
the ML model

I. Bier and N. Marom
J. Phys. Chem. A 124, 10330 (2020)



Machine 
Learning the 
Hubbard U 

Parameter in 
DFT+U



Hybrid Interfaces

A hybrid interface between two dissimilar materials may exhibit 
unique physical properties that do not exist in either bulk material

T. A. Peterson et al., Phys. Rev. B 94, 
235309 (2016); 

Spin injection at an interface 
between a ferromagnet and a 
semiconductor enables the 
implementation of a spin valve 

A superconductor/ semiconductor interface 
may enable the realization of networks of 
qubits based on Majorana zero modes

J. Shabani et al., Phys. Rev. B 93, 155402 (2016); 

Our goal is to develop computational 
tools for predicting the structure and 

properties of hybrid interfaces



Periodic Slab Models of Interfaces

Many DFT codes are based on plane-wave 
basis sets and therefore impose 3D periodic 
boundary conditions

The interface must be commensurate in the x-y plane, 
which may require large supercells

For a surface, vacuum space must be added along z to 
avoid spurious interactions between periodic replicas

Hydrogen passivation of dangling bonds at the surface 
may be required to eliminate spurious states

Often, a large number of layers of each material is 
needed to avoid quantum confinement effects

DFT simulations of 
interfaces are 

technically involved 
and 

computationally 
expensive!

Al

InAs



Band Structure of InAs

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. 
Rev. Lett. 77, 3865 (1996); 78, 1396 (1997)

• Includes a dependence on the density 
and its gradient (semi-local functional)

• Computationally efficient

• Suffers from the self-interaction error

PBE produces no band gap for InAs

The Heyd-Scuzeria-Ernzerhof range-separated hybrid functional (HSE)

• A fraction of exact (Fock) exchange is mixed 
with the PBE exchange and correlation 

• The Coulomb potential is split into short-
range (SR) and long-range (LR) parts 

• Has 25% exact exchange in the SR and 
reduces to PBE in the LR 

HSE mitigates SIE and produces a gap for InAs
but at a high computational cost 

J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003); 124, 219906 (2006)

PBE

In p

In s

As p

HSE

The Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation:



DFT+U(BO)

DFT+U
A Hubbard-like term, Ueff = U - J, is added to the DFT energy, where U is the on-
site Coulomb repulsion interaction and J is the exchange interaction:

S. L. Dudarev, G. A. Botton, S. Y. 
Savrasov, C. J. Humphreys, A. P. 
Sutton, Phys. Rev. B 57, 1505 (1998)
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Offers a balance of accuracy and efficiency Ueff is a system dependent parameter

We machine learn Ueff by Bayesian optimization (BO)

The objective function is formulated to reproduce the HSE band gap and 
band structure as closely as possible:

M. Yu, S. Yang, C. Wu, and N. Marom, npj Computational Materials 6, 180 (2020)
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DFT+U(BO)

M. Yu, S. Yang, C. Wu, and N. Marom, npj Computational Materials 6, 180 (2020)

HSE PBE+U(BO)

2D BO is performed 
to find the optimal 
U values for In-p
and As-p

Negative values of 
U are allowed

PBE+U(BO) produces a comparable band structure to HSE at 
a fraction of the computational cost



Electronic Structure of InAs and InSb Surfaces 
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The parameters obtained for bulk 
InAs are transferrable to a surface 
slab with 11 layers (largest we could 
calculate with HSE)

M. Yu, S. Yang, C. Wu, and N. 
Marom, npj Computational 
Materials 6, 180 (2020)

40-50 atomic layers are required 
to converge the electronic 
structure of InAs and InSb
surfaces to the bulk limit

S. Yang et al., arXiv
2012.14935 (2020)



DFT: FunctionalsBulk Band Unfolding

A slab with 20 
layers is used 

to simulate the 
β2(2x4) 

reconstruction 
of InAs(001)

XY Unfolding

Z Unfolding

Z-unfolding onto a bulk unit 
cell oriented in (001) yields 

more bulk-like band structure

Bands 
corresponding 
to kz=|ΓX| are 

present Unfolding in the xy plane 
onto a 1x1xZ slab produces 

a dense band structure

Bulk 
Unfolding

Bulk unfolding onto 
the primitive cell 

eliminates kz=|ΓX| 
bands 

The band structure is 
in agreement with 

ARPES

arXiv 2012.14935



DFT: FunctionalsInAs(001) Surface Reconstructions

LEED shows superposition of 2x4 and 4x2 reconstructions

Different reconstructions exhibit different signatures of 
surface states but have similar band bending

DFT supports the coexistence of 2x4 and 4x2 domains

β2(2x4) ζ(4x2) c(4x4) α2(2x4) 

S. Yang et al., arXiv
2012.14935 (2020)

Surface sensitive ARPES would be needed to detect surface states
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DFT: FunctionalsEffect of Oxidation on InAs(111) vs InSb(110)
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InSb(110)
PBE+U(BO) is in 
agreement with 

ARPES experiments

For InAs(111) 
oxidation leads to 
band bending and 
the appearance of 
an electron pocket

For InSb(110) 
oxidation does not 

cause band bending 
and no electron 
pocket appears

This is due to 
stronger charge 

transfer from 
surface As to O than 

from Sb to O

S. Yang, N. Schröter, V. Strocov, S. Schuwalow, M. Rajpalke , K. Ohtani, P. Krogstrup, G. 
Winkler, J. Gukelberger, D. Gresch, G. Aeppli, R. Lutchyn, N. Marom, arXiv 2012.14935 (2020)
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