First Principles Molecular Dynamics with DFT

Yosuke Kanai
UNC Chapel Hill



First Principles (ab Initio) Molecular Dynamics (some books call it “Quantum MD”)

Molecular Dynamics (MD) simulation in which nuclei (i.e. atoms-electrons) move
according to forces that are obtained from DFT calculation.

* Born Oppenheimer Molecular Dynamics (BOMD)

e Car Parrinello (extended Lagrangian) Molecular Dynamics (CPMD)



Recall Classical Mechanics formulations

Newton (1643-1727):
U=U(R")

Atom positions
Lagrange (1736-1813):
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Hamilton (1805-1865):
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Principle of Least Action is omitted here.



Modern Molecular Dynamics formulation

Lagrange (1736-1813):

MR2 d 0L 0L
LR Ry =3 —=-U doR " oR
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MR =F, =-V, U(R)

U(R) :Potential Energy - a mathematical function of 3 N, variables.

“Classical” MD - a set of analytical functions with empirical parameters are
used to model U(R) approximately.

First-Principles MD - U(R) is obtained by approximately solving electronic Schrodinger Eq.
for a particular R from first principles (e.g. using DFT).



Potential Energy Surface for F-H-CI

Potential Energy Curve for O-O

Potential Energy
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Molecular Dynamics simulation MIR'[ =F =-V_ U(R)
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Various properties can be obtained as a function of Volume, Pressure, and Temperature.

Classical ensemble average
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Example. Simulation of Liquid Water at Silicon Surface

By Donghwa Lee

Dependence of Water Dynamics on Molecular Adsorbates near Hydrophobic Surfaces: First-
Principles Molecular Dynamics Study
D. Lee, E. Schwegler, Y. Kanai. J. Phys. Chem. C, 118, 8508 (2014)



http://pubs.acs.org/doi/abs/10.1021/jp502850k

Bulk-like
(~15A)

How is the interface modeled?

Simulation cell

Periodic Boundary Conditions (PBC) is
used.
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One needs to make sure the water region

as well as silicon part is large enough such
that calculated properties are converged.

o

“Finite size error” needs to be minimized.



Molecular Dynamics Simulation Step

|

For a given {R,(t)}, calculate U({R}) or equivalently the force on atoms (F=-VU).

l

Move the atoms using a numerical integrator (e.g. Verlet algorithm)

* Approximately solve MIR[ =F =-V_U(R) onacomputer with a
finite At. :

e.g. R|(t+At)=2R(t)-R(t-At)+At%F,(t)/M,

*T and P can be controlled by using so-called “thermostats”.

e.g. Velocity scaling thermostat

v
Update atomic positions: R;(t)=R;(t+At)
|




Molecular Dynamics details omitted

Numerical Integrator for Computational Simulation

Many numerical approaches exist. Velocity Verlet is probably the
most widely used integrator.

Calculating Ensemble-averaged quantities from Time-averages: Ergodicity

. . . 1 [fott .
(0) = j J O(R,R)P(R,R) dRdR = lim — O(R(t"), R(t"))dt'

t-oo t to

P(R, R) _ Q—le—H(R,R)/kBT Q = Jf e—H(R,R)/kBT dRdR

NVE — microcanonical ensemble vs. NVT — canonical ensemble

Thermostats

Velocity scaling approaches M,R; = F(R)-(M;/t)(T*/T — 1) R,
e.g. Berendesen

Extended Lagrangian approaches ,
e.g. Nose Lyose = Z,%SZR, —U(R) + % $% — gkgT* Ins



A typical mathematical expression for Pottential Energgy, U, in classical MD

U({R;}) = Z Z 4e,
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First Principles (Born Oppenheimer) Molecular Dynamics

MR, = F,=-V, U(R)

l

U(R)=E (“PO(R)>,R)

1

MR - —VRIE(|IIJO(R)>,R) --V, n}ljin<‘P(R)‘1—AI“P(R)>

Note : Atom = Nucleus (R,) + Electrons (r;)

H= 2—%Vf +—
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Classical nuclear-nuclear repulsion

Where does DFT come in?



Hellmann-Feynman Theorem

P(r"; R)

Parametric dependence on nuclear positions

Force on nucleus that is indexed with / (i.e. not explicit function of nuclear positions)
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Recall the expression for the Hamiltonian
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i i i . Classical nuclei repulsion
Its derivative with respect to R, is
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Force on a nucleus, I, is then given by

F = —<‘P0(R)‘VRII§7‘IPO(R)>

=—EV ZZ.e Eflp (r..r;R)V, rZ_Ie]i |1P0(r1...rn;R)drl...dr
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Electron density
p(r;R) = N [ W5(r, 1 1p; R) Yo (1, 1,15 R) dr,_ dry
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* DFT naturally gives the essential ingredient for performing MD simulations.



First-Principles Molecular Dynamics based on DFT m,

Il
U

h

1. For positions of nuclei, {R,...Ry}, and solve DFT-KS equations

—, self-consistently

MD Simulation

v E|r R] f|p( )|dr +v (Oly,(r)=e.(r)
p(r)= 22|wl. Gl

2. Calculate force on each nucleus/ion:

Ze
R

F,=-3V, Zfz_f'ez + [ PRV, oR]
I '

3. Integrate equation of motion for the nuclei: perform a time
step (At) and find new positions for the nuclei

M R (t)=F (R(t))



What about Hellmann-Feynman (HF) force in practice ?

F=-v, mlgn<lI’(R)‘Fl“P(R)> =-V, <‘PO(R)‘]§I“PO(R)>

~(W,(R)\V, HW (R))- <VRI‘PO(R)‘FI‘1IJO(R)>—<1PO(R)‘[9‘VR11110(R)>

: *

(W (R)|V, H|W,(R)) - E,(V, P (R)|¥,(R))~ E, (¥ (R)|V, ¥ (R))
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Only if the wave function is the exact G.S. solution of the Schrodinger equation.

*Basis set completeness

In the DFT language (in terms of electron density)
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Nuclei repuIS|on HF force




Forces in Kohn-Sham DFT: EKS_DFT[{UJ,-},R]

_ SF
F = Ef VW, (r; R)(S (r R +V, Y, (r,R)—(Swi (r;R))dr

= Ef (VR, WZ(r;R)(ﬁKS -y, (GR)+V (r;R)(ﬁKS — el.)zpi*(r;R))dr

Vanishes only for exact KS eigenfunctions.

Forces in Kohn-Sham DFT numerical calculations: y (1;R) = EC,:)Xm(l‘;R)

H,p = (1 Hs| )

*Basis set completeness

=EEVR cf’f)(H . )c(’ +E ) (i)fVR X (G RY(H —£)x,(r;R)dr +c.c.

i g.,m

Vanishes for exact KS elgenfunc. Vanishes if basis set is R-independent.

E( —S)C(l)



Remark about Basis Set

Numerical Atom-Centered Orbitals (NAO): discussed by V. Blum

Codes : FHI-aims, etc

Gaussians Type Orbitals (GTO) : Gaussian functions centered on atomic nuclei are

used as basis set functions. Many integrals can be
calculated analytically.

Codes : GAUSSIAN, Q-Chem

Planewaves (PW) : Planewaves are used as basis set functions, convenient when the
periodic boundary conditions is used. It is often used with
pseudopotentials to replace core electrons.

Codes: Quantum-Espresso, Qbox/Qb@l|

Popular for FPMD because the basis set does not depend on
the nuclear positions (no Pulay force to implement in codes).



Car Parrinello (extended Lagrangian) Molecular Dynamics: “CPMD”

VoLuME 55, NUMBER 22 PHYSICAL REVIEW LETTERS 25 NOVEMBER 1985

Unified Approach for Molecular Dynamics and Density-Functional Theory
K. Car
Internarional School for Advanced Studies, Trieswe, Daly
and

M. Parrinello

Dipartimento di Fisica Teorica, Universita di Trieste, Triesie, Taly, and
Imernational School for Advanced Studies, Triesie, Taly
(Received 5 Augusi |985)

We present a unified scheme that, by combining molecular dynamics and density-functional
theory, profoundly extends the range of both concepts. Our approach extends molecular dynamics

Review : Car-Parrinello Molecular Dynamics
Jurg Hutter, Wires — Computational
Molecular Science, 2, 513 (2012)

Popular codes for performing CPMD
CPMD, CP code (Q-Espresso), Qbox, Qb@lI,
etc.

*CP2K does not have CPMD!

1985 Trieste J By Thomas D. Kiihne



Car Parrinello extended Lagrangian Lagrange multiplier for

enforcing orthonormality

1 Ri{o )= S50 i)+ S el Jim1s S, () -0,
IRAS) 2 9 if? < i,] i Ty i

I=1

Fictitious mass parameter for electronic degrees of freedom.

Y.(r,1) are treated as if they are classical fields.

d oL oL .
— = MR =-V_ E+ sz wlw
dt aR[ aRI 1 R, ; J R1< ‘ J>
_ EV ‘lleirfp(r;R)v \ZR\dHEA Ve (wlw,)




Why/when can CPMD work?

There needs to be "adiabatic” separation (no energy exchange) between artificial
electronic motion and real ionic/nuclear motion.

To achieve such, How do you find an appropriate fictitious electron parameter p ?

Characteristic frequency of the slowest “electronic motion” is related to HOMO-LUMO
energy gap, and it must be higher than fastest nuclear/ionic motion.

E 1/2
min a max
" = | 2L >
e M lon

Example: System with H atom: u~ 500 a.u.
At ~ 5-10 a.u. = 0.1-0.2 femto-seconds



Car Parrinello Molecular Dynamics in a nutshell

“The heart of the matter is the “on the fly” calculation of the potential energy surface

for nuclear motion, without performing a self-consistent diagonalization of the Kohn—
Sham Hamiltonian at each time step...

The Car—Parrinello approach has remarkable time stability, which derives from energy
conservation in the extended parameter space of electrons and nuclei...

Considerably larger drifts occur in Born—Oppenheimer simulations due to accumulation
of the systematic errors in the electron minimization.”

Roberto Car in “AB INITIO Molecular Dynamics: Dynamics and Thermodynamic
Properties” (2006)



Applications




Electron localization on CO, in Water

Injection of an extra electron:
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Electron Localization on CO, in water
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Key observations

The electron dynamically localizes somewhat
around CO, as the bending angle fluctuates.

Large stochastic fluctuations prompt the electron to
localize further, and it reciprocally causes the angle
to become smaller as CO, anion.




Band splitting due to Spin Orbit Coupling (SOC)
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Influence of Disorder and Anharmonic Fluctuations on the Dynamical
Rashba Effect in Purely Inorganic Lead-Halide Perovskites

Arthur Marronnier, Guido Roma*, Marcelo A. Carignano, Yvan Bonnassieux, Claudine Katan, Jacky Even, Edoardo Mosconi

,and Filippo De Angelis J. Phys. Chem. C 123, 291 (2019)
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Challenges in FPMD

You have exciting opportunities to contribute and advance the field!



Challenges : Exchange-Correlation (XC) Functional

gO0

—

Pair Correlation Function, g(r)

35 ﬁ T Probability of finding another particle (e.g. O atom) at a
3 CPMD —— - - - -
BOMD given distance from a particle.
25 . _
2T | . v ey =-'.::"..l-'.
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T(K) Length(ns) I'max.1 Emax.1 I'min.1 Zmin.1 I'max.2 Zmax.2
PBE 300 150 2.72 3.72 3.25 0.31 4.41 1.56
BLYP 300 ~20 2.75 3.23 3.35 0.40 4.50 1.50
SCAN+rvv10 300 ~20 2.7 3.1 3.3 0.6 4.6 1.2
BLYP-D3 300 64 2.77 3.08 3.36 0.79 4.48 1.15
revPBE-D3 300 ~100 2.77 2.77 3.29 0.66 4.35 1.28
revPBEO-D3 300 ~300 2.80 2.56 3.50 0.90 4.45 1.09
B97M-rV 300 200 2.83 2.68 3.56 0.93 4.54 1.03
Exp 298 2.75-2.80 2.53-2.73 3.45 0.80-0.85 4.40-4.50 1.12
Exp 296 2.75 2.62 3.45 0.84 4.43 1.13




Challenges : Nuclear Quantum Effect (NQE)

gOO0o

gOH
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o
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Nuclei can be treated as quantum-mechanical particles using Feynman’s path
integral (PI) formulation. TRPMD is a recent Pl method by Ceriotti, et al.

| | | |
classical nuclei MD  —

Artificial neural network technique was used
to “learn” FPMD simulation.

Yao and Kanai, J. Chem. Phys. 153, 044114
(2020)

gHH

clalssical ﬁuclei IIVID —_—
TRPMD s

...........
..........

Agreement to experiment improves
when NQE is accounted for properties
like gOH and gHH.

The disagreement for gOO remains,
likely due to XC error.




Challenges : “Rare” event problem

Charge Localization, Stabilization, and Hopping in Lead Halide Perovskites:
Competition between Polaron Stabilization and Cation Disorder
F. Ambrosio, D. Meggiolaro, E. Mosconi, and F. De Angelis

ACS Energy Lett. 4, 2013 (2019)

Polaron Hopping
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Distortions
of the inorganic lattice
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ACS Energy Lett. 4, 2013, (2019)

hole

Energy (meV)

Rare-event problem

You may not observe such a
transition if energy barrier is high
(unless FPMD is very very long).

Advanced approaches (Nudged
Elastic Band, String, Meta-
Dynamics) are needed but they are
not without inconveniences.

Reaction coordinate




Challenges : Accounting for Electron Dynamics

In FPMD (both BOMD and CPMD*), electrons remain in the ground state of given
nucler positions; no quantum dynamics of electrons are included.

*Electron dynamics in CPMD is fictitious, not real quantum dynamics

Born Oppenheimer Molecular Dynamics

MR, = —Vg EPFT[po; R]

Ehrenfest Dynamics (W|th Time-Dependent DFT)

M R -VRIE'DFT[p(t);Rj::j:= p(r.0y= 3206, r.0f
., d
in—{0,(0) = Hys[p(r,0) ][0, ()

- {T + \Afext (t)+ \AfHatree [p(t)] + \Afxc [p(t)]}‘d)i (t)>



Challenges : Accounting for Electron Dynamics

Ehrenfest Dynamics example : Nuclei can move in response to the quantum
dynamics of electrons caused by optical excitation.

''''''''''''''''

A single water molecule at rest is electronically excited with
electric field (in Z direction) that corresponds to 8.75 eV
photon absorption.

By Chris Shepard

Electric field pulse applied at this point







