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First Principles (ab Initio) Molecular Dynamics (some books call it “Quantum MD”)

Molecular Dynamics (MD) simulation in which nuclei (i.e. atoms-electrons) move 
according to forces that are obtained from DFT calculation.

• Born Oppenheimer Molecular Dynamics (BOMD)

• Car Parrinello (extended Lagrangian) Molecular Dynamics (CPMD) 



Recall Classical Mechanics formulations
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Principle of Least Action is omitted here.

Equation of Motion 

Atom positions

!A≡ dA
dt

!!A≡ d 2A
dt2



Modern Molecular Dynamics formulation

MI
!!RI = FI = −∇RI

U (R)

𝑈(𝑹) : Potential Energy  - a mathematical function of 3 Natom variables.

“Classical” MD - a set of analytical functions with empirical parameters are 
used to model U(R) approximately.

First-Principles MD - U(R) is obtained by approximately solving electronic Schrödinger Eq. 
for a particular R from first principles (e.g. using DFT).
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Potential Energy Curve for O-O Potential Energy Surface for F-H-Cl
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Molecular Dynamics simulation

Various properties can be obtained as a function of Volume, Pressure, and Temperature. 

MI
!!RI = FI = −∇RI
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Example. Simulation of Liquid Water at Silicon Surface

By Donghwa Lee

Dependence of Water Dynamics on Molecular Adsorbates near Hydrophobic Surfaces: First-
Principles Molecular Dynamics Study
D. Lee, E. Schwegler, Y. Kanai.   J. Phys. Chem. C, 118, 8508 (2014)

http://pubs.acs.org/doi/abs/10.1021/jp502850k


Bulk-like 
(~15Å) 

Surface 
(~4Å) 

Surface 
(~4Å) 

How is the interface modeled?

Periodic Boundary Conditions (PBC) is 
used. 

One needs to make sure the water region 
as well as silicon part is large enough such 
that calculated properties are converged.

“Finite size error” needs to be minimized.

Simulation cell



For a given {RI(t)}, calculate U({R}) or equivalently the force on atoms (F=-▽RU).

Move the atoms using a numerical integrator (e.g. Verlet algorithm)

e.g.    RI(t+Δt)=2RI(t)-RI(t-Δt)+Δt2FI(t)/MI

Update atomic positions:  Ri(t)=Ri(t+Δt)

* Approximately solve                                                     on a computer with a 
finite Δt.

MI
!!RI = FI = −∇RI

U (R)

* T and P can be controlled by using so-called “thermostats”.

e.g.    Velocity scaling thermostat

Molecular Dynamics Simulation Step



Molecular Dynamics details omitted

Numerical Integrator for Computational Simulation

Calculating Ensemble-averaged quantities from Time-averages: Ergodicity

Thermostats  

NVE – microcanonical ensemble     vs.    NVT – canonical ensemble

Velocity scaling approaches
e.g. Berendesen

Extended Lagrangian approaches
e.g. Nose

Many numerical approaches exist. Velocity Verlet is probably the 
most widely used integrator.
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A typical mathematical expression for  Pottential Energgy, U,  in classical MD 

U({Ri})

Empirical parameters are
determined by fitting to
experiments and electronic
structure calculations.



First Principles (Born Oppenheimer) Molecular Dynamics

U (R) = E0 Ψ0 (R) ,R( )
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Classical nuclear-nuclear repulsion

Note : Atom → Nucleus (RI)  +  Electrons (ri)  

Where does DFT come in?



Hellmann-Feynman Theorem

FI = −∇RI
min
Ψ
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Ψ(rn;R)
Parametric dependence on nuclear positions
(i.e. not explicit function of nuclear positions)Force on nucleus that is indexed with I



Recall the expression for the Hamiltonian

Its derivative with respect to RI is
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Force on a nucleus, I, is then given by

FI = − Ψ0 (R) ∇RI
Ĥ Ψ0 (R)

= − ∇RI

ZIZI 'e
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* DFT naturally gives the essential ingredient for performing MD simulations.

Electron density

𝜌 𝐫; 𝐑 ≡ 𝑁∫Ψi∗ 𝐫, 𝐫\…𝐫k; 𝐑 Ψi 𝐫, 𝐫\…𝐫k; 𝐑 𝑑𝐫\…𝑑𝐫k



First-Principles Molecular Dynamics based on DFT

2. Calculate force on each nucleus/ion:

3. Integrate equation of motion for the nuclei: perform a time
step (Δt) and find new positions for the nuclei

M
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1. For positions of nuclei, {R1…RN}, and solve DFT-KS equations 
self-consistently
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What about Hellmann-Feynman (HF) force in practice ?

Only if the wave function is the exact G.S. solution of the Schrodinger equation. 

In the DFT language (in terms of electron density)

FI = − ∇RI

ZIZI 'e
2

RI −RI'I '
∑ −∇RI

EDFT [ρ;R]
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∇RI

ρ(r;R)∫ dr

HF force Nuclei repulsion
!FI

*Basis set completeness



Forces in Kohn-Sham DFT: EKS−DFT ψi{ },R"
#
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Vanishes only for exact KS eigenfunctions.

Forces in Kohn-Sham DFT numerical calculations: ψi (r;R) = cm
(i )

m
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g
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*Basis set completeness



Remark about Basis Set

Numerical Atom-Centered Orbitals (NAO):   discussed by V. Blum    

Codes :  FHI-aims, etc

Gaussians Type Orbitals (GTO) :    Gaussian functions centered on atomic nuclei are 
used as basis set functions. Many integrals can be 
calculated analytically.

Codes : GAUSSIAN, Q-Chem

Planewaves (PW) : Planewaves are used as basis set functions, convenient when the 
periodic boundary conditions is used. It is often used with 
pseudopotentials to replace core electrons.

Codes:  Quantum-Espresso, Qbox/Qb@ll

Popular for FPMD because the basis set does not depend on 
the nuclear positions (no Pulay force to implement in codes).



Car Parrinello (extended Lagrangian) Molecular Dynamics:   “CPMD” 

By Thomas D. Kühne

Popular codes for performing CPMD
CPMD, CP code (Q-Espresso), Qbox, Qb@ll, 
etc.

*CP2K does not have CPMD!

Review : Car-Parrinello Molecular Dynamics
Jurg Hutter, Wires – Computational 
Molecular Science, 2, 513 (2012)
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Car Parrinello extended Lagrangian

Fictitious mass parameter for electronic degrees of freedom.

are treated as if they are classical fields.
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Why/when can CPMD work?

There needs to be ”adiabatic” separation (no energy exchange) between artificial 
electronic motion and real ionic/nuclear motion.

ωe
min ≈

Egap

µ

!

"
##
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%
&&

1/2

>ω Ion
max

To achieve such, How do you find an appropriate fictitious electron parameter μ ?

Characteristic frequency of the slowest “electronic motion” is related to HOMO-LUMO 
energy gap, and it  must be higher than fastest nuclear/ionic motion. 

Example: System with H atom: μ~ 500 a.u.
Δt ~ 5-10 a.u. = 0.1-0.2 femto-seconds



“The heart of the matter is the ‘‘on the fly’’ calculation of the potential energy surface 
for nuclear motion, without performing a self-consistent diagonalization of the Kohn–
Sham Hamiltonian at each time step…

The Car–Parrinello approach has remarkable time stability, which derives from energy 
conservation in the extended parameter space of electrons and nuclei…

Considerably larger drifts occur in Born–Oppenheimer simulations due to accumulation 
of the systematic errors in the electron minimization.” 

Roberto Car in “AB INITIO Molecular Dynamics: Dynamics and Thermodynamic 
Properties” (2006)

Car Parrinello Molecular Dynamics in a nutshell 



Applications



Simulation time (ps)

Electron localization on CO2 in Water

CBM/LUMO

VBM/HOMO

(H2O)s - LUMO

CO2 - LUMO

Simulation

Single-Particle Energy Levels

Material CO2 in water
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Injection of an extra electron:

Experiment
Zhang, LH. Et al.  Angwdt. Chemie, 53, 9746 (2014)



Electron Localization on CO2 in water

Simulation time (ps)
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OCO angle (deg)

Key observations

The electron dynamically localizes somewhat
around CO2 as the bending angle fluctuates.

Large stochastic fluctuations prompt the electron to
localize further, and it reciprocally causes the angle
to become smaller as CO2 anion.

Density associate w/ the extra electron (spin density)
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CsPbI3

J. Phys. Chem. C 123, 291 (2019)

Band splitting due to Spin Orbit Coupling (SOC)



Challenges in FPMD

You have exciting opportunities to contribute and advance the field!  



Challenges : Exchange-Correlation (XC) Functional 

Pair Correlation Function, g(r) 
Probability of finding another particle (e.g. O atom) at a 
given distance from a particle.



Challenges : Nuclear Quantum Effect (NQE)
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Nuclei can be treated as quantum-mechanical particles using Feynman’s path 
integral (PI) formulation.   TRPMD is a recent PI method by Ceriotti, et al.

Agreement to experiment improves 
when NQE is accounted for properties 
like gOH and gHH.

The disagreement for gOO remains, 
likely due to XC error.

Artificial neural network technique was used 
to “learn” FPMD simulation.

Yao and Kanai, J. Chem. Phys. 153, 044114 
(2020)



ACS Energy Lett. 4, 2013 (2019)

Charge Localization, Stabilization, and Hopping in Lead Halide Perovskites: 
Competition between Polaron Stabilization and Cation Disorder
F. Ambrosio, D. Meggiolaro, E. Mosconi, and F. De Angelis

hole 

Challenges : “Rare” event problem



ACS Energy Lett. 4, 2013, (2019)

hole Rare-event problem

You may not observe such a
transition if energy barrier is high
(unless FPMD is very very long).

Advanced approaches (Nudged
Elastic Band, String, Meta-
Dynamics) are needed but they are
not without inconveniences.



Challenges : Accounting for Electron Dynamics

In FPMD (both BOMD and CPMD*), electrons remain in the ground state of given 
nucler positions; no quantum dynamics of electrons are included.

*Electron dynamics in CPMD is fictitious, not real quantum dynamics

MI
!!RI = −∇RI

EDFT [ρ(t);R] ρ(r,t) = 2 φi (r,t)
2

i

occ

∑

Born Oppenheimer Molecular Dynamics

Ehrenfest Dynamics (with Time-Dependent DFT)

i! d
dt
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= T̂+ V̂ext (t)+ V̂Hatree ρ(t)"# $%+ V̂XC ρ(t)"# $%{ } φi (t)
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noP 𝜌i; 𝑹



Challenges : Accounting for Electron Dynamics

Electric field pulse applied at this point 

By Chris Shepard

A single water molecule at rest is electronically excited with 
electric field (in Z direction) that corresponds to 8.75 eV 
photon absorption.

Ehrenfest Dynamics example : Nuclei can move in response to the quantum 
dynamics of electrons caused by optical excitation.
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