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Matter

matter and changes
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Materials, Molecules, Atoms

]

Nuclei, Electrons

Electrons are the glue that bind the
repulsive nuclel and determine the
structure of matter, from molecules
to macromolecules, to bulk materials.

electron

neltron
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Quantum Mechanics

The wave-like behavior of electrons

Electron Beam
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S2 4
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Quantum mechanics describes electrons

. E.I .
il =HU

HY =FEV

Erwin Schrodinger



Wavefunction--the curse of dimensionality

H\IJ(XL Xz,"-XN) — E\D(x]’xzj...xN)

# of electrons wavefunction amount of data

| v(x)) 103
2 T(x, X,) 100

\Il(xlszj...xN) 103N

*The amount of data contained in wavefunction grows exponentially
with N, the number of electrons! N can be very large.

*The problem is caused by the exponential increase in volume
associated with adding extra dimensions to a (mathematical) space.
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Exponential growth of information

N, positions and types of atoms <;\> N , ’U(I‘)

\

o )
Y
10°Y in W(rq, 1o, . TN) [

1. v(r) is the electrostatic potential from the nuclei

Atoms ZA




Electron density [, 3-dimentional only

Electron density for the hydrogen atom Electron density for aniline
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. Large density value

Small % electron enclosure

| NH, ¢ ¢ Y77
p(r) = Lexp(-2r) | 2 <o 1y~

II 2 I3 ll 5 ﬁ
Distance from the nucleus

Small density value

Large % electron enclosure

*Electron density p(r) is the measure of the probability of an
electron being present at a specific location.

*Experimental observables in X-ray diffraction for structural
determination of small and large molecules



Density Functional Theory

Walter Kohn
The Nobel Prize in Chemistry 1998

Density functional theory (DFT) (1963, 1964)

1 p(r) <= N, v(r) <= V¥

2 pr)=>n \¢i(r)\2 just the sum of molecular orbital densities
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DFT: Exchange-correlation energy

L = E[p(r)]

E =Kinetic energy + potential energy
+ Coulomb interaction energy

T E [p(1)]

E Lp(r)]

*Exchange-correlation energy
*The only unknown piece in the energy

-About 10% of |
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Approximations in exchange-correlation energy

£ lp(r)]

* 1965: Kohn and Sham, Local Density Approximation (LDA)

 1980s-1990s: Axel Becke, Robert Parr, John Perdew

*Generalized Gradient Approximation (BLYP, PBE)

*Hybrid Functionals (B3LYP, PBEO) 12



Density Functional Theory

Structure of matter: atom, molecule, nano,
condensed matter

Chemical and biological functions
Electronic

Mechanical

Magnetic

Optical (TD-DFT)



Introducing the electron density




For a determinant wave function

|‘I’{}> = ‘Xlxz...xij...xw>

N
p(r) = ('I'n|z.:'i(r— r;)|®o)
N T
= Z (Pg| d(r — r;) |Pg)
N
Zfdxi |X£(Ki)|2 d(r —r;)
N
- Z[ﬂhﬁi Ixi(x:)[? 0(r — 1)
v
Z]drizwi{ri]ﬂ'{siﬂg 5(r —r;)

N
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The variational principle for ground states

EY = min (U] H |¥)
4

= min{ (V| T + V.. |¥) + \I!\Zvemt r;) qf}

(

= {7+ Ve )+ drvemr)p(r)}

\

Most QM methods use the wavefunction as the
computational variable and work on its optimization.
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The constrained-search formulation of DF T

W

min {(\IJ| T+ Ve |W) + /dmem(r)p(r)}
min min {<\1J|T+VEE|KIJ)+
p(r) T—p(r)

min ¢ min (V|7 + V.. |¥) +
p(r) | ¥—p(r)

min { Flp(e)]+ [ dmmmp(r)}

o(r) {

I;ﬂ(lg Ey|p(r))

Levy, 1979
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The constrained search

A. We have anew  Flp(r)] = Tmilgr)<w| T+V, |¥)

1. Afunctional of density; given a density, it gives a
number.

2. A universal functional of density, independent of
atoms, or molecules.

B. The ground state energy is the minimum

E° = H?{LiIilEU[p{l‘)]
plr

- min{F[pr:r)] + / drvm(r)p{r}}

plr)

C. p(r) is the new reduced variable
25



Kohn-Sham theory, going beyond the Thomas-Fermi

Approximation

Use a non-interacting electron system, —Kohn-Sham reference system,
to calculate the electron density and kinetic energy

[Ds) = |x1X2+- XX XN)
N
o) = Y I6ir)P

Ll = (03 -5V

Z/drtqﬁ (r;) (—_vg) i(r;)
N

1
D (&l — 5V o)
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Kohn-Sham theory

N

N
pr) = D loi(r)f Tl = Y (61— 57210

T

o p(r) =5 \qbi(r)|2 is the true electron den-
sity, but Ts[p] is not T'[p]. However, Ts[p] is
a very good approximation to Ts[p]

e T he essence of KS theory is to solve Ts[p]
exactly in terms of orbitals

28



Kohn-Sham theory

N

N
plx) = D loi(r)f Tl = Y (6l-5716)

T

Introduce the exchange correlation energy functional

Flp| = Tl[p|+ Veelpl
= 1 [,0] 1 J[p] =5 Emc[p]

Ezclp] = Tlpl — Tslp] + Veelp] — Jp]

J[p] = % [ drdr’ P(T}P(:f" )

r—r



Kohn-Sham Equations

N

N
pr) = Y leio)’ Tl = (61— 57216

T

In terms of the orbitals, the KS total energy functional is now

N 1_,
Elo) =Y (@1 - 592160 + Tlp) + Bl + [ drvese(r)o(e)

The g.s. energy is the minimum of the functional w.r.t. all
possible densities. The minimum can be attained by
searching all possible orbitals

W(g:] = E,[¢:] — Zsi {< ¢:l¢s > —1}

oW (¢
3¢, (r)

— ) 48




[

The orbitals {|¢;)} are the eigenstates of an
one-electron local potential vs(r) if we have
explicit density functional for E..[p] (KS equa-
tions)

(_%vz + vs(l‘)) |&:) = €i|9i)

or a nonlocal potential vN-(r,r'), if we have
orbital functionals for E;.[¢;] (generalized KS
equations)

(572 + o) ) 163) = e85 |63)
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One electron Equations

Kohn-Sham (KS)

(_ %v%r ve(r )) |6:) = &1 9;)

0E._[p]

= )

+ V() + V(1)
Generalized Kohn-Sham (GKS)

(_%‘Uz—l—vfl'(l', l';)) |¢":> = E:GKS |¢5;>
v (e, ') = OE, [6p,(x’,r)]

. g 5p.( 1) + [vj(l') —|-Vgxf(l')]5( r' —r)

Computational Scaling

In finite basis sets, KS and GKS equations turn into matrix
eigenvalue problem. The scaling is N°. 32



Feastures of Kohn-Sham theory

1.

4.

With N orbitals, the kinetic energy is treated rigorously. In
comparison with the Thomas-Fermi theory in terms of
density, it is a trade of computational difficulty for
accuracy.

. The KS or GKS equations are in the similar form as the

Hartree-Fock equations and can be solved with similar
efforts.

KS or GKS changes a N interacting electron problem into
an N non-interacting electrons in an effective potential.

The E_xc is not known, explicitly. It is about 10% of the
energy for atoms. 33



The Local Density Approximation (Kohn-Sham, 1964)

BEPAp] = [ drp(e)eac(o()

cexe(p(r)) is the XC energy per particle of a
homogeneous electron gas of density p. IT is a
function of p.

Dirac exchange energy functional

EEPAp) = —Cp [ p()%dr

34



Beyond the Local Density Approximation

LDA E.. = |drf(p) VWN. PW,

GGA E..= |drf(p.Vp) |BLYP.PW96, PBE

Hybrid E_=c E 4 ¢, ESS | B3LYP, PBEO
range-separated

35



1/3 2
B = — 3 [ p,*? §(§) + Pxo dr

o=a B 4\ 1 + 6Bx, sinh ! x,
_ \ -
EPBE _ / p4/3 % i Y | us* dr
. 4\ 1 + us*/x
EEF = Z /(I) IU }U (IJ ‘,:T(r,) EIDIG(IJ) drdrf
1}6 - I

EXMY = 0.2E" + 0.8EXP* + 0.72AEP® + 0.81EX""
+0.19E/"™™ 36



Atomization energies for a few selected molecules, mH

Mol. Exp. LSDA PBE
H, 174.5 180.3 166.7
Li, 39.3 37.9 31.7
Be, 4.8 20.6 15.6
N, 364.0 427.1 387.6
F, 62.1 124.6 85.1
LiH 924 96.9 85.2
OH 169.6 197.9 175.0
HF 225.7 259.1 226.3
H,O 370.0 4249 373.2
NH; 473.9 537.5 480.8
CH, 668.2 737.2 669.0
CcO 413.2 476.3 428.4
NO 243.7 316.2 273.9
Cl, 924 132.1 103.7

UHF MP2 B3LYP
133.9 165.7 —
4.8 25.5 33.5
11.2 —1.6 —
183.3 368.1 365.6
—15.9 111.6 57.7
52.6 86.1 929
108.4 165.7 172.3
154.6 227.9 222.1
2454 366.5 368.1
318.7 462.1 478.4
522.7 661.3 670.4
2773 4239 408.3
84.5 242.2 248.0
— — 87.8

37



Mean Absolute Errors (MAE) Thermochemistry(G3 set150), Barriers (HTBH42161 and

NHTB38151), Geometries (T96), Hydrogen Bonding and Polarizabilities

post-B3LYP
G3 barriers- T96 H bond- Uiso
functional (kcal/mol) (kcal/mol) (ap) (kcal/mol) (au)
LDA 72.24 14.36 0.0107 3.02 0.78
GGA and Meta-GGA

BLYP 6.64 7.37 0.0205 1.46 0.79
HCTH 5.59 4.15 0.0119 2.22 0.48
HCTH407| 5.72 4.69 0.0107 1.05 0.50
PBE 15.99 8.29 0.0148 1.24 0.63
BP86 18.71 8.49 0.0158 1.39 0.66
BPBE 7.55 6.81 0.0155 1.67 0.53
OLYP 5.22 5.36 0.0142 2.21 0.53
OPBE 8.86 5.21 0.0121 2.55 0.31
TPSS 7.85 8.03 0.0123 1.16 0.44

MO6-L 5.87 3.82 0.0056 0.58 0.40 38



Mean Absolute Errors (MAE) Thermochemistry(G3 set150), Barriers (HTBH42161 and

NHTB38151), Geometries (T96), Hydrogen Bonding and Polarizabilities

post-B3LYP

G3 barriers- T96 H bond- Uiso

functional (kcal/mol) (kcal/mol) (ao) (kcal/mol) (au)

LDA 72.24 14.36 0.0107 3.02 0.78

Hybrid Functionals

TPSSh 6.03 6.45 0.0082 0.98 0.30
B3LYP 4.28 4.50 0.0097 1.01 0.37
PBEO 6.37 4.11 0.0089 0.76 0.21
B97—-1 3.90 3.88 0.0093 0.75 0.28
B97-2 4.31 2.79 0.0087 0.97 0.19
B97-3 3.70 2.22 0.0087 0.92 0.26
MO06 4.78 2.03 0.0088 0.47 0.39
M06-2X 3.34 1.37 0.0110 0.34 0.35
MO6-HF 6.26 3.14 0.0167 0.88 0.73
HF 132.38 15.12 0.0277 3.15 1.01

39
HFLYP 35.39 9.18 0.0423 1.13 1.36



Mean Absolute Errors (MAE) Thermochemistry(G3 set150), Barriers (HTBH42161 and

NHTB38151), Geometries (T96), Hydrogen Bonding and Polarizabilities

post-B3LYP

G3 barriers- T96 H bond- Uiso

functional (kcal/mol) (kcal/mol) (ao) (kcal/mol) (au)

LDA 72.24 14.36 0.0107 3.02 0.78

Range-Separated Functionals

CAMB3LYP 4.04 2.51 0.0119 0.69 0.23
LCBLYP 1691 3.73 0.0169 0.90 0.31
rCAMB3LYP 5.50 2.76 0.0225 0.78 0.37
LC-PBE 16.69 3.07 0.0245 0.75 0.53
HSE 4.37 343 0.0082 0.77 0.21

40



l‘ I ‘ Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Particle—Particle Random Phase Approximation for Predicting
Correlated Excited States of Point Defects
Jiachen Li,* Yu Jin, Jincheng Yu, Weitao Yang,® and Tianyn 7hu*
Table 1. VEEs of VC in Diamond Obtained from the ppRPA

Cite This: J. Chem. Theory Comput. 2024, 20, 79797989 R Approach Based on PBE and B3LYP Functionals Compared
with Reference Values”

Method Structure 'E/'T,
Experiment”™ 22
All possible defect excited state ppRPA@PBE (supercell 215) D4 1.67
[ A ppRPA@PBE (extrapolated) Doy 1.77
conduction band conduction band conduction band ppRPA@B3LYP (supercell 215) D2 2.02
ppRPA@B3LYP (extrapolated) Doy 2.15
ppRPA@PBE (supercell 215) Ty 1.51
el oo electrone ] I I | ppRPA@PBE (extrapolated) Ty 1.56
:> ppRPA@B3LYP (supercell 215) Ty 1.81
ppRPA@B3LYP (extrapolated) Ty 1.89
TDDFT@PBE (supercell 215) Dy 1.19
valence band valence band valence band TDDFT@PBE (extrapolated) D,, 1.26
(N-2)-electron N-electron TDDFT@B3LYP (superce]l 215) Dsyg4 1.30
TDDFT@B3LYP (extrapolated) Dy 1.40
CCSD* D, 2.09
. . DMC™ Tq 1.51 + 0.34
Carbon Vacancy in Diamond ASCE@B3LYP'S T, 157

Accuracy about 0.1 eV for the ecitation energy.



System and Computational Details

System — Azurin 4AZU
o 128 Residues, 43.5%x33.1x41.4 A3
o Water box, 90x90x90 A3

o Mutants: Met44Lys, Asn47Leu,
Met1210xm (artificial)
o Detalls

G03+Sigma, UBLYP/ccpv-dz
QM region: 5 coordination

\ Produced with VideoMach /
www.vidcochh.com SRl

Met 44 | /\

40 A

residue + 2 mutation sites His 117 Q Qo /) ree

(102~107 atoms) | \or 1127

MD time: 160 ps / ensemble < " A

Cutoff: 20 A for QM/MM,
PME for MD sampling

Pseudo bond (Parks et al. ™)

I~ r 4



Redox Potentials of Azurin and

Mutants
* Relative redox potential (WT as reference)”

’
ra
s
300 d Mutant AEyrEp .ﬂ.jﬂigxm Error
/7 WT - n -
NATL M44K 0.08 0.056 0.02
200 Vi e NATL 017 0110  0.06
S I
= M44K N47S -0. -0. _
£ 100 , M121L 0.12 0.093 0.03
N p M1210xm -0.10 -0.119 0.02
& / N47S+M121L 0.25 0.231 0.02
ol 0F MI21Q
-] P - .
s
-100 M1210xm Jr Azurin WT
Vd
~ . .
200 o Units in V
//
'
T | | | | |
-200 -100 OH IOQ 200 300
AE®L ot [mV]
48

Shen, Zeng, Hu, Hu and Yang, JCTC 2018



Density Functional Theory

DFT is exact and should give agreement with experiment or
high-level ab initio calculations in all situations.

Approximate functionals perform well in many systems but
can fail dramatically in other situations.

This can be traced back to errors of DFA (density
functional approximation)

The understanding of these errors will hopefully lead to new
and improved functionals.

The same challenges for other approximate QM
methods.



Error Increases for systems with fractional
number of electrons: Zhang and Yang, JCP 1998

H : o ..
» at the dissociation limit
too low energy for delocalized electrons

10.0 I | 1 | I I I | | | | I |
i (H%)
0.0 - ¢ HF —
—-10.0 —
©° —20.0 —
E - BH&HLYP T
S -30.0 |- —
X i
] —40.0 B3LYP ]
—-50.0 —
i BLYP |
—60.0 —
_70.0 | | | | I | | | | | I |
00 1.0 20 30 40 50 8680 7.0

R (A)
Savin, in Seminario, “Recent Developments and Applications of Modern DFT”, 1996



DFT for fractional number of electrons

from grand ensembles,
Perdew, Parr, Levy, and Balduz, PRL. 1982

Enys=(1—-0)EN +dEN11
pN4s = (1 —9d)pn +dpNn41

Yang, Zhang and Ayers, PRL, 2000 — pure states in molecular dissociation



Quantum Mechanics of Degeneracy

i
HY, = EV,

HY, = EV,
then

H<Clwl T Cz%) = E<61W1 T Cz%)



Ground State Degeneracy in QM and in DFT
WY, Yingkai Zhang and Paul Ayers, PRL, 2000 — pure states

H; at the dissociation limit

Y

(24

E =FEQ0)+E(Q)

LPﬂ
E, = E(1)+E(0)

Ty:%(‘{fa+\Pﬁ)

E, = E()+E(}) =2E(3)

i S O

Proton

Proton
B

e

Proton a/?

E(N): EG)=5;E0)+3E(1)=3E(1)



The linearity condition in fractional charges: The energy of e/2

E(N)

0

E(Y)=1E()

0 e/2 €



E(N)

typical LDA/GGA —

=
=l
QL
-
LL]
— N ____F;
N-1 N N+1

Number of electrons



A dimer, with oo separation: each monomer has £(N)

exact
oN-convex E,, ——
oN-concave E,.

N
X

te

E(N+3) - E(N)

1 \
_A -
N-1 N N+1
Number of electrons

1
For o N-convex, 2E(N + 5) < E(N)+E(N +1), delocalized

For O N-concave, 2E(N + %) > E(N)+ E(N +1), localized



Delocalization and Localization Error
Paula Mori-Sanchez, Aron Cohen and WY, PRL 2008

exact
oN-convex E,. ——
oN-concave E,, —— ]

Localization Error

0+

-A

Delocalization Error /

N-1 N N+1
Number of electrons

Consequence of Delocalization Error
1. predicts too low energy for delocalized distributions

2. gives too delocalized charge distributions



Delocalization Error

Define the Delocalization Error as the violation of the
linearity condition for fractional charges

30 | A H3binding curve H atom W|th fractional charge

Delocalization
Error

Cohen, Mori-Sanchez and Yang, 2008 Science



A large class of problems /—
* Wrong dissociation limit for molecules and ion W
» Over-binding of charge transfer complex /

* too low reaction barriers e

» Overestimation of polarizabilities and hyperpolarizabilities

« QOverestimation of molecular conductance in molecular electronics

 Incorrect long-range behavior of the exchange-correlation potential

» Charge-transfer excited states

 Band gaps too small

» Diels-Alder reactions, highly branched alkanes, dimerization of
aluminum complexes

'
Delocalization Error




Delocalization Error in LDA, GGA, B3LYP

Too low energy for fractional charge systems

* Energy of dissociation of molecular ion: too low
« Charge transfer complex energy: too low

* Transition state energy: too low

* Charge transfer excitation energy: too low

« Band gap: too low

* Molecular conductance: too high

« (Hyper)polarizability for long molecules: too high

* Diels-Alder reaction products, highly branched
alkanes, dimerization of aluminum complexes:
too high

Cohen, Mori-Sanchez and Yang, 2008 Science



Seeing the delocalization error

Where is the negative charge ?

300

200

100 r

AE kcal/mol

16 16.5 17 17.5 18
Number of electrons



DFT: Chemical potentials

The PPLB linearity conditions

E (N, +8) = (1 — 0)E(N,) + 0E (N, + 1)

The chemical potentials

—I(N,). = E(N,) — E(N, — 1)if N,— 1 < N < N,

N) =
HN) —A(N,) = E(N, + 1) — E(N,)if N, < N < N, + 1

NOTE: all ground states, no excited state



Band Gap

Definition of fundamental gap

B9 — (B(N —1) — E(N)} — {E(N) — E(N + 1)}
= I —A
derivative k
pderiv {8_E _ 9E }
gap ONIN+§s ONIN_—§

Eénatgger — Egaegv, Only if E(N 4 §) is linear.



DFT: How to calculate the chemical potentials

| —I(N,). = E(N) — E(N,— 1)if Ny~ 1 < N < N,

M) =1 _ 4Ny = BN, + 1) = E(N)if Ny < N < N, + 1

How to calculate chemical potential in DFT was NOT known
until 2008.



Chemical potentials in DFT

(PRB 77, 115123, 2008, Cohen, Moris-Sancehz and Yang)

OF |
{aﬁ ] = — 2(6dV21oy) + [o1(0) M(x) + v, (1) @(r)dr + [y (r)vit (v, 1) py(x")de
f_ GKS
f )

Before this work, no meaning for (G)KS LUMO has been given.

A new meaning to the frontier eigenvalues of the HF theory, as the HF
chemical potentials of electron removal or addition,

different from Koopman’s theorm on HF theory

(Yang, Cohen and Mori-Sanchez, JCP 2012)

HF (=)
3Ev . HF
ON SHOMO
v
HE\(H)
3Ev HF
ON ELuMO
VvV



How can fundamental gap be predicted in DF T

For continuous and differentiable functionals of density/density matrix

e HOMO energy is the chemical potential for electron removal

e LUMO energy is the chemical potential for electron addition

e Fundamental gaps predicted from DFT with KS, or GKS
calculations, as the KS gap or the GKS gap

e For orbital functionals, the LUMO of the KS (OEP) eigenvalue
is NOT the chemical potential of electron addition. The KS
gap is not the fundamental gap predicted by the functional.

OF
< — (6 JH o))

WY, Mori-Sanchez and Cohen, PRB 2008, JCP 2012



Exact
typical LDA/IGGA ——

Energy

N-1 N N+1
Number of electrons




| exact
oN-convex E,. ——
S oN-concave E,. i}
z
L
79
+
<
LI
G L
For Linear E(N) Al
OF
AN =1, AE =— '
ON N-1 N

Number of electrons

Convex curve (LDA, GGA):
derivative underestimates |, overestimates A, [-A is too small

Concave curve (HF):
derivative overestimates |, underestimate A, [-A is too large

N+1



Delocalization Error—Size dependent manifestation

30 | A H3binding curve H atom with fractional charge

Delocalization
Error

Challenges

» Error and correction are known in terms of factional charges, but there is no
fractional charge at any finite R

» Correction is needed at large R, but not at small R.

What is difference between the electronic structures at small and large R ?



Localized Orbital Scaling Correction (LC

Chen Li, Xiao Zheng, Neil Qiang Su and WY (arXiv:1707. 00856v1)
National Smence Rewew 2018 :

Chen Li Xiao Zheng Neil Qiang Su

- Orbitalets: Novel localized orbitals to represent density
matrix.

« Size-consistent, functional of the GKS density matrix for
corrections to common DFA.

« Accurately characterization of the distributions of global and
local fractional electrons.

« Systematic improvements: the dissociation of cationic
species, the band gaps of molecules and polymers, the
energy and density changes upon electron addition and
removal. and photoemission spectra.



Orbitalets: Localized in Space and Energy

Preserving Symmetry and Degeneracy in the Localized Orbital
Scaling Correction Approach
Neil Qiang Su, Aaron Mahler, and Weitao Yang

J. Phys. Chem. Lett. 2020, 11, 1528-1535

Orbitalets ,,{ '--afe

cc

=154 o
1610) = 2= Ul %) . OQ”%#
(b) R.,=2.0 A

Minimizing Fw.r.t. Uz, ) ) o
.. A . ¥]

o Y B RV Y <

*e g o4 ]

(c) R,:=5.0 A

F=(1-y) ) Ar>+yC ) Ah)’
P P



. . U@,
Novel Localized Orbitals ol oo s

O

Orbitalets

Energy

Py
M
Ele]

o]
[

{ giL(J }

-- Span both occupied and virtual space

-- Localization both in the physical
space and in the energy space.

Traditional
-- localized orbitals -- localization in the physical space

-- canonical orbitals -- localization only in the energy space
(energy eigenstates of an one-particle Hamiltonian)

Energy window ¢,



New LOSC, as correction to DFA

1
AE"OR® = Z KijAij (0i Aij):atr(""-‘-’)

pi(r _TCx [
s = 3 [ [ P v~ T2 [ o)

Non-empirical parameter to
get correct limit for H

2

pj(r)]3dr

Wl

T = 6(1 —271/3) ~ 1.2378

Orbital energy corrections



(a) G2-97 set

24 20 -16 -12 -8 4 0
Ref. -1 _and-A _(eV)



LOSC: HOMO, LUMO and Energy Gaps

o

o LOSC-LDA
o LDA




LOSC: HOMO, LUMO and Energy Gaps

> (c) polyacene X + Exp
- o o LOSC-LDA
0- M o LDA
. o —~r <+
o
3- o o . ]
O ° ° ) )
1 . &%
9- /




L OSC: corrections to electron density

LOSC-PBE Aq(Cl)=-0.92 CCSD Aq(Cl)=-0.96



Band Gaps of Bulk Systems

TABULATED DATA

DFA  [rLOSC Elec.”?  Error

Si 0.71 1.71 1.23 0.48
BP 1.35 2.77 2.50 0.27
SiC 1.36 2.63 2.60 0.03
AP  1.57 3.03 2.60 0.43
C 421 5.68 580 —-0.12
BN 4.35 6.39 6.62 —0.23
LiICl 6.33 078 984 —-0.06
NaF 6.39 12.50 12.20 0.30
LiIF 9.19 15.24 1543 —-0.19
MAE 0.23

Band gaps (eV). Elec: exp. — ZPR

'Shang et al.,, J. Phys. Chem. C (2021), doi:10.1021/acs. jpcc.1c00861
2Engel et al. PRB (2022), doi:10.1103/PhysRevB.106.094316

15

—
o

IrLOSC gap (eV)

4]

LiF
Gap type
O DFA NaF
X IrLOSC
LiCl
(o)
BN
C
() (o)
BP AIP (o)
“sic/ ©
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Electronic gap (exp. - ZPR, eV)

Jacob Williams,
arXiv 2024



Mean absolute error (eV) of ionization potential and electron affinity results on 40 test molecules.

Method IP EA
scGW 0.47 0.34
GoW-PBE 0.51 0.37
LOSC-BLYP 0.47 0.32
LOSC-PBE 0.37 0.32
LOSC-B3LYP 0.26 0.27
LOSC-LDA 0.34 0.48
BLYP 2.98 1.99
PBE 2.81 2.17
B3LYP 2.00 1.58
LDA 2.58 2.44

arXiv 2018, JPC A 2019, 123, 3, 666
Yuncia Mei, Chen Li, Neil Su and WY



Chemical potentials,
Quarsiparticle energies

HOMO, LUMO < >

The rest of (G)KS | S | The rest of

orbital energies Quarsiparticle
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Higher ionization energies of polyacene (n = 2,4,6) from GKS eigenvalues and ASCF calculation.

Eigenvalues
Molecule LOSC-

MO Exp IP BLYP BLYP

Naphthalene Au 8.15 7.71 5.26

Blu 8.87 8.84 5.97

B2g 10.08 9.37 6.91

B3g 10.83 11.12 7.81

MAE 0.37 3.00

Tetracene Au 6.97 6.86 4.44

AB2g 8.41 8.50 5.72

Blu 8.41 8.83 5.89

Au 9.56 9.61 6.74

B3g 9.70 10.06 7.02

B2g 10.25 10.04 7.40

MAE 0.21 2.68

Hexacene Au 6.36 6.18 4.06

B2g 7.35 7.56 5.03

B3u 8.12 8.78 5.86

Au 8.56 8.35 5.92

Blg 9.36 9.55 6.60

B2g 9.36 9.35 6.65

Au 9.95 9.82 7.20

B3u 9.95 10.57 7.55

MAE 0.28 2.52

arXiv 2018



Photoemission spectrum of nitrobenzene
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arXiv 2018, JPC A 2019, 123, 3, 666
Yuncia Mei, Chen Li, Neil Su and WY
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Photoemission spectrum of anthracene QOO
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Photoemission spectrum of C60
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Photoemission spectrum of H,TPP
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Orbital energy vs. quasiparticle energy

From extensive numerical results, (G)KS orbital energies are good
approximation to the quasiparticle energies.

Unoccupied Em(IN) = w;;(N) = En(N +1) — Eg(N)

Occupied en(N) = w, (N) = Eyo(N) — ER(N —1)



QE-DFT: Quasiparticle Energy-DFT for excitation energies
from N-1 ground state calculation

N
| [ | | | % |
——— — —— — Above i e—
D LUMO LUMO
-+ & - -+ — - -+ —
-+ — -+ — -+ —
-+ = -+ = -+ =
Eo(N) Eo(N-1) Em(N)
Ground State Ground State Excited State

AE,(N) = Ep(N) — Eo(

=

)
= [En(N) — Eo(N — 1)] = [Eo(N) — Eo(N — 1)]

— Wi (N = 1)~ whi (N = 1)

m

~ Em(N — 1) — ELUM()(N — 1)

Two groups independently:
Bartlett group: JCP, 2018, 149, 131101

Yang group: arXiv:1810.09906, 2018; JPC A 2019, 123, 3, 666-673



https://arxiv.org/abs/1810.09906

Low-lying excitation energies (eV) from different methods

Method 1st triplets 2nd triplets 1st singlets 2nd singlets Total
MAE MSE MAE MSE  MAE MSE MAE MSE MAE MSE
HF 1.34 -1.10 113  -1.13 1.59 1.33 1.64 1.45 143 1.23
BLYP 0.21 0.15 0.46 0.41 0.76 0.76 0.32 0.02 046 0.25
B3LYP 0.39 0.08 0.58 0.54 0.71 0.41 0.46 -0.38 0.54 0.00
LDA 0.21 -0.06 0.57 0.57 0.67 0.65 0.34 0.03 046 0.10
LOSC-BLYP 0.63 0.47 0.69 0.43 1.09 1.09 0.64 0.15 0.80 048
LOSC-B3LYP 0.66 0.36 0.63 0.55 0.98 0.72 0.60 -022 0.75 0.21
LOSC-LDA 0.41 0.12 0.81 0.56 0.84 0.84 0.67 0.19 0.68 0.26
TD-B3LYP 0.48 0.48 0.31 0.31 0.31 0.17 0.37 0.33 0.36  0.31
ASCF-B3LYP 0.42 0.12 0.57 -043 0.83 0.63 0.55 0.13 0.62 0.25




Conical Intersection
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Higher ionization energies of polyacene (n = 2,4,6) from GKS eigenvalues and ASCF calculation.

Eigenvalues
Molecule LOSC-

MO Exp IP BLYP BLYP

Naphthalene Au 8.15 7.71 5.26

Blu 8.87 8.84 5.97

B2g 10.08 9.37 6.91

B3g 10.83 11.12 7.81

MAE 0.37 3.00

Tetracene Au 6.97 6.86 4.44

AB2g 8.41 8.50 5.72

Blu 8.41 8.83 5.89

Au 9.56 9.61 6.74

B3g 9.70 10.06 7.02

B2g 10.25 10.04 7.40

MAE 0.21 2.68

Hexacene Au 6.36 6.18 4.06

B2g 7.35 7.56 5.03

B3u 8.12 8.78 5.86

Au 8.56 8.35 5.92

Blg 9.36 9.55 6.60

B2g 9.36 9.35 6.65

Au 9.95 9.82 7.20

B3u 9.95 10.57 7.55

MAE 0.28 2.52

arXiv 2018



Excited State Energies from DFT — orbital energy data

Unoccupied em(N)~ whH(N)=FE,(N+1)— EyN)
Occupied 2N & w; (N) = Ey(N) — Ep(N — 1)
» Approximate experimental excitation energies from orbital energies in
DFT ground states-- abundance of data (since 2018...)
« But, DFT has been formulated only for ground states!
» For the quasiparticle energy interpretation of all orbital energies of a

ground state to be true, the DFT functional must contain excited-
state information.



Excited State Energies from DFT — total energy data

ASCF method has been around since Slater’s work in the 70s.

« Similar set of SCF Kohn-Sham equations with non-Aufbau
occupations, the excited state of the noninteracting reference system

» (Good accuracy for excited states, similar to ground states, better than
TD-DFT for double, charge transfer excitations.

. PTHE JOURNAL OF
* Very active area: HYSICALLCQH??S%

pubs.acs.org/JPCL

Ziegler, Baerends, Jones
gler, ’ ’ Highly Accurate Prediction of Core Spectra of Molecules at Density

Gunnarsson, Mukamel, Functional Theory Cost: Attaining Sub-electronvolt Error from a
Van Voorhis, Gill, Restricted Open-Shell Kohn—Sham Approach
iptarka Hait* and Martin Head-Gordon*
Head-Gordon, Herbert, Dipt | H t* and Martin Head-G |
Lu ber. . Cite This: J. Phys. Chem. Lett. 2020, 11, 775-786 E Read Online
ACCESSl |l Metrics & More | Article Recommendations | o Supporting Information

ABSTRACT: We present the use of the recently developed square
gradient minimization (SGM) algorithm for excited-state orbital
optimization to obtain spin-pure restricted open-shell Kohn—Sham %
° B ut D FT is esta bl is h ed (ROKS) energies for core excited states of molecules. The SGM f
algorithm is robust against variational collapse and offers a reliable >
route to converging orbitals for target excited states at only 2—3 £
o n Iy fo r g ro u n d states ! times the cost of ground-state orbital optimization (per iteration).

ROKS/SGM with the modern SCAN/@wB97X-V functionals is 25 286 287 28 B o @ e @
found to oredict the K-edee of C. N. O. and F to a root mean




aT V(lV > physics > arXiv:2403.04604 m
& \ . ‘\% .

Physics > Chemical Physics A\=¢ Paul Ayers
[Submitted on 7 Mar 2024]

Foundation for the ASCF Approach in Density Functional Theory
Weitao Yang, Paul W. Ayers

Electron density is not sufficient. Not really a density functional.
1. (parallel to HK) Theorem: Define a functional of excitation number n, and trial
potential w(x):
E,[n,w(x)] and variational principle for the nth excited state of v(x)

excited state Potential Functional Theory (nPFT)

2. (parallel to KS). Excited state KS assumption: the mapping of an interacting
excited state (n, w(x)) to a noninteracting excited states (n,, ws(x) ),

E, [ng; Wy (x)] = E, [n, w(x)]
a. Three equivalent sets of variables: n., w,(x), or the density matrix y.(x,x’) or the
wavefunction & of the noninteracting reference system.
b. The minimum is the ground state, the stationary solution is an excited state.

c. SCF Kohn-Sham equations, Aufbau for ground state, non-Aufbau for excited states.



a I' ){\lv > physics > arXiv:2403.04604

Physics > Chemical Physics

[Submitted on 7 Mar 2024]

Foundation for the ASCF Approach in Density Functional Theory

Weitao Yang, Paul W. Ayers
Et: [TS (K-_- K!)]

1. Both ground and excited state share the same functional

2. But for ground state, because the ground-state density uniquely determines
the potential, and the density matrix or the wavefunction of the
noninteracting system, E, [ys(x.x")] is still a density functional (DFT!)

3. The rigor is same for ground and excited states.

4. Total energies from ASCF DFA calculations for excited states is
established.

5. How about orbital energies?



Search...

\lV > physics > arXiv:2408.08443

Physics > Chemical Physics

[Submitted on 15 Aug 2024]

Fractional Charges, Linear Conditions and Chemical Potentials for
Excited States in ASCF Theory |

Weitao Yang, Yichen Fan

E, [*‘}*S(L X’)] degeneracy and size consistency

1. Extension to fractional charges () < 0 < 1 _ y
Vs = (L= 0)vg*(N) + 07" (N + 1) Yichen Fan

2. Proved the linear condition
Eu[(1 = 0)vi (N) + 07" (N + 1))
=(1—0)E'(N)+dE"(N +1).

3. Generalize the PPLB condition for ground states in term of electron densities
to excited states in terms of density matrices



Excited-State Chemical Potentials: slopes of the lines
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= I' / 1V > physics > arXiv:2408.10059

Physics > Chemical Physics

[Submitted on 19 Aug 2024]
Orbital Energies Are Chemical Potentials in Ground-State Density
Functional Theory and Excited-State ASCF Theory

Weitao Yang, Yichen Fan

Proved the general chemical potential theorem

1. True for any approximate functional calculations

I + )
0= (N) = (éﬁ*E;(n.s.lS,.M)) N-: C(N) = (()EU (n‘.s, ms,N))
.ﬂ,s{-s - (::)JV v f1=1 ()N v fa:O
_ OB, [y ) _ OB, 1] .
o) o af alLV).
M @ 1fa=0

2. Approximate, depending on the functional approximation (delocalization error)
i(N)=E}(N) - E (N - 1) ca(N) = EJ'(N +1) — E}(N)

Orbital energies approximate excited state IP, EA,
or excited state quasiparticle energies. The equality holds for bulk systems.



Total energy relative to 9-electron ground state (eV)
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Theoretical Progress

Beyond Commonly Used Functionals

« Exact conditions on fractional charges and spins based on QM
degeneracy principle

» Corrections to systematic errors in DFT
« Computational optical spectroscopy from ground state calculations

« Unified functional for energy, charge density, band gaps of
molecules and bulk systems

Beyond Ground States
 Foundation for excited-state theory -- ASCF

* Fractional charges, linear conditions, and chemical potentials for
excited-state ASCF theory

« Physical significance of all orbital energies in ground state DFT
and excited-state ASCF theory

Yang and Ayers, 2024 arXiv:2403.04604
Yang and Fan, 2024 arXiv:2408.08443
Yang and Fan, 2024 arXiv.2408.10059
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