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First Principles (ab Initio) Molecular Dynamics (some books call it “Quantum MD”)

Molecular Dynamics (MD) simulation in which classical atomic nuclei move 
according to forces that are obtained from DFT (or another electronic structure 
theory) calculation.

• Born Oppenheimer Molecular Dynamics (BOMD)

• Car Parrinello (extended Lagrangian) Molecular Dynamics (CPMD) 



Recall Classical Mechanics formulations
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Principle of Least Action is omitted here.

Equation of Motion 

Atom positions

!A≡ dA
dt

!!A≡ d
2A
dt2



Modern Molecular Dynamics formulation

MI
!!RI = FI = −∇RI

U (R)

𝑈(𝑹) : Potential Energy  - a mathematical function of 3 Natom variables.

“Classical” MD -      a set of analytical functions with empirical parameters are 
   used to model U(R) approximately.

First-Principles MD -  U(R) is obtained by approximately solving electronic Schrödinger Eq. 
       for a particular R from first principles (e.g. using DFT).

Lagrange (1736-1813):
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Potential Energy Curve for O-O Potential Energy Surface for F-H-Cl
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Molecular Dynamics simulation

Various properties can be obtained as a function of Volume, Pressure, and Temperature. 
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U (R)

𝑇 =
1

3𝑁𝑘!
'
"#$

%

𝑴" 𝑹̇" + 𝑹̇"

𝑃 =
1
3𝑉 '

"#$

%

𝑴"𝑹̇" + 𝑹̇" −𝑹" + ∇𝑹!𝑈(𝑹))

Classical ensemble average



Example - Simulation of Liquid Water at Silicon Surface

By Donghwa Lee

Dependence of Water Dynamics on Molecular Adsorbates near Hydrophobic Surfaces: First-
Principles Molecular Dynamics Study
D. Lee, E. Schwegler, Y. Kanai.   J. Phys. Chem. C, 118, 8508 (2014)

𝐑! (𝑡) = 2𝑛𝐷𝑡

Einstein's relation for Diffusion Coefficient

http://pubs.acs.org/doi/abs/10.1021/jp502850k


Bulk-like 
(~15Å) 

Surface 
(~4Å) 

Surface 
(~4Å) 

How is the interface modeled?

Periodic Boundary Conditions (PBC) is 
used. 

One needs to make sure the water region 
as well as silicon part is large enough such 
that calculated properties are converged.

“Finite size error” needs to be minimized.

Simulation cell



For a given {RI(t)}, calculate U({R}) or equivalently the force on atoms (F=-▽RU).

Move the atoms using a numerical integrator (e.g. Verlet algorithm)

e.g.    RI(t+Δt)=2RI(t)-RI(t-Δt)+Δt2FI(t)/MI

Update atomic positions:  Ri(t)=Ri(t+Δt)

* Approximately solve                                                     on a computer with a 
finite Δt.

MI
!!RI = FI = −∇RI

U (R)

* T and P can be controlled by using so-called “thermostats”.

e.g.    Velocity scaling thermostat

Molecular Dynamics Simulation Step



Molecular Dynamics details omitted in the lecture

Numerical Integrator for Computational Simulation

Calculating Ensemble-averaged quantities from Time-averages: Ergodicity

Thermostats  

NVE – microcanonical ensemble     vs.    NVT – canonical ensemble

Velocity scaling approaches
e.g. Berendesen

Extended Lagrangian approaches
e.g. Nose

Many numerical approaches exist. Velocity Verlet is probably the 
most widely used integrator.
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A typical mathematical expression for  Potential Energy, U,  in classical MD 

U({Ri})

Empirical parameters are 
determined by fitting to 
experiments and electronic 
structure calculations. 



First Principles (Born Oppenheimer) Molecular Dynamics

U (R) = E0 Ψ0 (R) ,R( )
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!!RI = FI = −∇RI

U (R)
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Classical nuclear-nuclear repulsion

Note : Atom → Nucleus (RI)  +  Electrons (ri)  

Where does DFT come in?

Ψ(rn;R)
Parametric dependence on nuclear positions
(i.e. not explicit function of nuclear positions)



Hellmann-Feynman Theorem

FI = −∇RI
min
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Force on nucleus that is indexed with I



Recall the expression for the Hamiltonian

Its derivative with respect to RI is
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Force on a nucleus, I,  is then given by

FI = − Ψ0 (R) ∇RI
Ĥ Ψ0 (R)

= − ∇RI

ZIZI 'e
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* DFT naturally gives the essential ingredient for performing MD simulations.

Electron density

𝜌 𝐫; 𝐑 ≡ 𝑁∫Ψ"∗ 𝐫, 𝐫!…𝐫%; 𝐑 Ψ" 𝐫, 𝐫!…𝐫%; 𝐑  𝑑𝐫!…𝑑𝐫%



First-Principles Molecular Dynamics based on DFT

2. Calculate force on each nucleus/ion:

3. Integrate equation of motion for the nuclei: perform a time
step (Δt) and find new positions for the nuclei
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1. For positions of nuclei, {R1…RN}, and solve DFT-KS equations 
self-consistently
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!!RI (t) = FI (R(t))

me =1
! =1



Remark about Different Implementations in Practice

Numeric Atom-Centered Orbitals (NAO):   discussed by V. Blum    

         Codes :  FHI-aims

Gaussians Type Orbitals (GTO) :    

Gaussian functions centered on atomic nuclei are used as basis set functions. Many 
integrals can be calculated analytically. 

         Codes : GAUSSIAN, Q-Chem

Planewaves - Pseudopotential (PW-PP) : 

Planewaves are used as basis set functions with “pseudo”-potentials to replace core 
electrons.
        
               Codes:  Quantum-Espresso, VASP, Qbox/Qb@ll

                Popular for FPMD  -  the forces are easy to implement.



Car Parrinello (extended Lagrangian) Molecular Dynamics:   “CPMD” 

By Thomas D. Kühne

Popular codes for performing CPMD
CPMD, CP code (QE), Qbox, Qb@ll, etc.

*CP2K does not have CPMD!

Review : Car-Parrinello Molecular Dynamics
Jurg Hutter, Wires – Computational 
Molecular Science, 2, 513 (2012)



LCP (R, !R; ψi{ }) = µ
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Car Parrinello extended Lagrangian 

Fictitious mass parameter for electronic degrees of freedom.

            are treated as if they are classical fields.
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Why/when can CPMD work?

There needs to be “adiabatic” separation (no energy exchange) between artificial 
electronic motion and real ionic/nuclear motion.

ωe
min ≈

Egap
µ

!

"
##

$

%
&&

1/2

>ω Ion
max

To achieve such, How do you find an appropriate fictitious electron parameter μ ?

Characteristic frequency of the slowest “electronic motion” is related to HOMO-LUMO 
energy gap, and it must be set higher than fastest nuclear/ionic motion. 

Example: System with H atom: μ~ 500 a.u.
Δt ~ 5-10 a.u. = 0.1-0.2 femto-seconds



“The heart of the matter is the ‘‘on the fly’’ calculation of the potential energy surface 
for nuclear motion, without performing a self-consistent diagonalization of the Kohn–
Sham Hamiltonian at each time step…

The Car–Parrinello approach has remarkable time stability, which derives from energy 
conservation in the extended parameter space of electrons and nuclei...” 

Roberto Car in “AB INITIO Molecular Dynamics: Dynamics and Thermodynamic 
Properties” (2006)

Car Parrinello Molecular Dynamics in a nutshell 



Applications



Simulation time (ps)

Electron localization on CO2 in Water

CBM/LUMO

VBM/HOMO

(H2O)s - LUMO

CO2 - LUMO

Simulation

Single-Particle Energy Levels

Material CO2 in water
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Injection of an extra electron:

Experiment
Zhang, LH. Et al.  Angwdt. Chemie, 53, 9746 (2014)



Electron Localization on CO2 in water

Simulation time (ps)
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OCO angle (deg)

Key observations

The electron dynamically localizes somewhat 
around CO2 as the bending angle fluctuates.

Large stochastic fluctuations prompt the electron to 
localize further, and it reciprocally causes the angle 
to become smaller as CO2 anion. 

Density associate w/ the extra electron (spin density)
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A few selections of Challenges and Advanced Topics for FPMD

You have exciting opportunities to contribute and advance the field!  



Challenge and Advanced Topic: Nuclear Quantum Effects (NQE)

Path integral (PI) method allows us to model atomic nuclei as QM particles.

An artificial neural network (ANN) was used to “machine-
learn” FPMD simulation w/ meta-GGA (SCAN).

Yao and Kanai, J. Chem. Phys. 153, 044114 (2020)

Pair Correlation Function, g(r)  :  
Probability of finding another atom at a 
given distance, r, from a particle.

Classical nuclei
Quantum nuclei

X-ray/Neutron diffraction

Soper and Benmore, Phys. Rev. Lett. , 101, 065502 (2008)

H-
H 

 g
(r

)



Challenge and Advanced Topic: “Rare Event” Problem

  

Si-Si ad-dimer rotation on Si(001) surface

Time-resolved STM

Time between subsequent transitions  1 ~10 sec

V(
R

)

P-P U-U

P-PU-U



  

How many MD steps do we need before observing a “single” transition event on 
average in an MD simulation?

With a MD time step of Δt = 1 femto-sec, 1016 steps are needed !!!! 

But, the transition itself takes place extremely fast.

V(
R

)

P-P U-U

Challenge and Advanced Topic: “Rare Event” Problem



Why not increase the MD time step ?

(1)  A very fast process (< 1 ps) when it happens. Needs a very good time resolution.
(2)  Numerical integrator (e.g. Verlet) restricts the largest possible time step.

Rare-event problem

Unlikely to observe such a transition if the energy barrier is high.

Advanced methods such as

  Nudged Elastic Band
  String Method
  Meta Dynamics, etc

 are needed to find ”Minimum energy path”  and/or Transition States.

Challenge and Advanced Topic: “Rare Event” Problem



Runge-Gross Theorem (1984): 

One-to-one correspondence between the external potential  and the ground-state 
(equilibrium)  density             .

Hohenberg-Kohn Theorem (1965): 

A fun read “A half century of density functional theory” A. Zangwill, Physics Today 68, 34 (2015) 

cannot happen.

Time-Dependent Density Functional Theory

One-to-one correspondence between time-dependent density and time-dependent potential, 
given the same initial many-body state at t0.

Many-body dynamics is governed by time-dependent density!

𝑂 𝑡 = Ψ(𝑡) E𝑂 Ψ(𝑡) = 𝑂 𝜌 𝑡 ;Ψ(𝑡9)

𝜌9 𝐫

𝜌9 𝐫
Ψ9:({𝐫;})

Ψ98({𝐫;})

Ψ: 𝑡 Ψ(𝑡9)

Ψ8 𝑡 Ψ(𝑡9)
cannot happen.𝜌 𝐫, 𝑡

Phys. Rev. 136, B684 (1964)

Phys. Rev. Lett. 52, 997 (1984)



Kohn-Sham Ansatz

A set of single-particle orbitals that yield the true density (Kohn-Sham system)
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Quantum Dynamics via Time-Dependent Kohn-Sham Eq.

Schleife, et al. J. Chem. Phys.  137, 22A546 (2012)

Energy functional as Constant-of-Motion
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Interaction w/ Electromagnetic Field 

Gauge invariance for applied EM field

G𝐻45 𝑡 =
1
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EM-field effect can be described either via 𝐀 or 𝜙.

“Delta kick” - E-field is applied suddenly at t=0 (all frequencies).
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Macroscopic current Conductivity

Dipole strength function (molecules) Dielectric function (extended systems)



Great Success!  :  Optical absorption spectrum of Benzene

Yabana and Bertsch, Int’l J. Quantum Chem.  75, 55 (1999)
“Time-dependent local-density approximation in real time: Application to conjugated molecules”



Heaven of Chemical Accuracy

The devil is the details: Exchange and Correlation (XC) Functional

𝑣lm!

Real-Time TDDFT for Simulating Nonequilibrium Electron Dynamics (Perspective)
J. Xu, T. E. Carney, R. Zhou, C. Shepard, Y. Kanai
J. Am. Chem. Soc. 146, 5011  (2024)

Hartree’s Earth

Hydrogen Chain

Reference

https://pubs.acs.org/doi/full/10.1021/jacs.3c08226


Application : Ag20 cluster at H-Si(111) surface

Type-I  level alignment

Ag20 H-Si(111) 

e-

h+

e-

h+

Plas
mon

Heaven of Chemical Accuracy

Ag20 Cluster

J. Bost, C. Shepard and Y. Kanai
Journal of Physics: Condensed Matter, 37, 045502 (2024) 

https://iopscience.iop.org/article/10.1088/1361-648X/ad8b8e
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Hole Excited Electron

Excitation of Ag20 cluster at H-Si(111) surface

Total

Ag20

H-Si(111)

H-Si(111)

Total
Ag20

Total

Ag20

H-Si(111)

Total

Ag20

H-Si(111)

Normal Excitation

Plasmon



Accounting for Electron Dynamics in Molecular Dynamics

In FPMD (both BOMD and CPMD*), electrons remain in the ground state of given 
nucler positions; no quantum dynamics of electrons are included.

                *Electron dynamics in CPMD is fictitious, not real quantum dynamics

Born Oppenheimer Molecular Dynamics

Ehrenfest Dynamics, with Real-time Time-Dependent DFT
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Ehrenfest Dynamics with RT-TDDFT

Electron dynamics (i.e. excitation) induces the movement of classical atomic nuclei.

RT-TDDFT with MD for atomic nuclei (i.e. Ehrenfest Dynamics)

Coupled dynamics of quantum electrons and classical atomic nuclei

𝑀/
𝑑6

𝑑𝑡6𝐑/ 𝑡 = −∇/(𝐸PQ. 𝜌 𝑡 ) 𝑖
𝜕
𝜕𝑡
𝜙= 𝐫, 𝑡 = P𝐻GH(𝑡)𝜙=(𝐫, 𝑡)

Electrons are “excited” with 8.75 eV photons.


