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First Principles (ab Initio) Molecular Dynamics (some books call it “Quantum MD”)

Molecular Dynamics (MD) simulation in which classical atomic nuclei move
according to forces that are obtained from DFT (or another electronic structure

theory) calculation.

* Born Oppenheimer Molecular Dynamics (BOMD)

e Car Parrinello (extended Lagrangian) Molecular Dynamics (CPMD)



Recall Classical Mechanics formulations

Newton (1643-1727):
U=U(R")

Atom positions
Lagrange (1736-1813):

L(R,R) = EM R _

Hamilton (1805-1865):
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Principle of Least Action is omitted here.



Modern Molecular Dynamics formulation

Lagrange (1736-1813):

M, R2 d L _ dL
dt 9R, OR

1

L(R,R) = 2

MR, = F,=-V, U(R)

U(R) :Potential Energy - a mathematical function of 3 N, variables.

“Classical” MD - a set of analytical functions with empirical parameters are
used to model U(R) approximately.

First-Principles MD - U(R) is obtained by approximately solving electronic Schrodinger Eq.
for a particular R from first principles (e.g. using DFT).



Potential Energy Surface for F-H-CI

Potential Energy Curve for O-O

Potential Energy

Molecular Dynamics simulation MIRI =F =-V_U(R)
1

Various properties can be obtained as a function of Volume, Pressure, and Temperature.

- Classical ensemble average

N
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Example - Simulation of Liquid Water at Silicon Surface

Einstein's relation for Diffusion Coefficient

(RZ)(t) _ onDt By Donghwa Lee

Dependence of Water Dynamics on Molecular Adsorbates near Hydrophobic Surfaces: First-

Principles Molecular Dynamics Study
D. Lee, E. Schwegler, Y. Kanai. J. Phys. Chem. C, 118, 8508 (2014)



http://pubs.acs.org/doi/abs/10.1021/jp502850k
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How is the interface modeled?

Simulation cell

Periodic Boundary Conditions (PBC) is
used.
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One needs to make sure the water region
as well as silicon part is large enough such
that calculated properties are converged.
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“Finite size error” needs to be minimized.



Molecular Dynamics Simulation Step

|

For a given {R(t)}, calculate U({R}) or equivalently the force on atoms (F=-V U).

l

Move the atoms using a numerical integrator (e.g. Verlet algorithm)

* Approximately solve Mlkl =F =-V_U(R) onacomputer with a
finite At. '

e.g. R|(t+At)=2R(t)-R,(t-At)+At%F,(t)/M,

* T and P can be controlled by using so-called “thermostats”.

e.g. Velocity scaling thermostat

v
Update atomic positions: R;(t)=R;(t+At)
|




Molecular Dynamics details omitted in the lecture

Numerical Integrator for Computational Simulation

Many numerical approaches exist. Velocity Verlet is probably the
most widely used integrator.

Calculating Ensemble-averaged quantities from Time-averages: Ergodicity

. . . 1 (ot .
(0) = f f O(R,R)P(R,R) dRdR = lim — O(R(t"), R(t"))dt’

t>oo t to

P(R, R) — Q—le—H(R,R)/kBT Q = jf e—H(RR)/ksT JRAR

NVE — microcanonical ensemble vs. NVT — canonical ensemble
Thermostats

Velocity scaling approaches M,R; = F(R)-(M,;/7)(T*/T — 1) R,
e.g. Berendesen

Extended Lagrangian approaches T 0
e.g. Nose Lynose = X ?’SZR, —U(R) + 55‘2 — gkgT* Ins



A typical mathematical expression for Potential Energy, U, in classical MD

U({R}) =

1
We Z _ kb (l’ = ro)z m Empirical parameters are

bond32 deterrnmed by fitting to
experiments and  electronic
structure calculations.

]
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First Principles (Born Oppenheimer) Molecular Dynamics

MR =F,=-V, UR)

l

U(R)=E (“PO(R)>,R) W R)

Parametric dependence on nuclear positions
(i.e. not explicit function of nuclear positions)

MR = —VRIE(“PO(R)>,R) --V, n}Pin<‘P(R)‘[§I“I’(R)>

1

Note : Atom - Nucleus (R,) + Electrons (r;)

ﬁ=2—%vf+

2
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Classical nuclear-nuclear repulsion
Where does DFT come in?



Hellmann-Feynman Theorem

Force on nucleus that is indexed with 7

F=-V, rrEn<‘P(R)‘F[“P(R)> --V, <1PO(R)‘[§
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Recall the expression for the Hamiltonian

2
ZIZI,e

- h
H=2—2—mevf+ E‘r R‘

i , ) . Classical nuclei repulsion
Its derivative with respect to Ry is

3 Z7Z.e
VR1H=—E r—R‘ EV i_lel'
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Force on a nucleus, I, is then given by

F,=-(¥,(R)V, A% (R))

=—EV 22€ Efll!(r rR)V ZeR“P(r .r ;R)dr, ...

I'

Electron density

p(r;R) =N f Yo(r,ry ry; R)Wo(r,ry 1y R)dr, dry

2
=—EVR] Z’Z_I'e | +fp(r;R)V ‘rZ; ‘

I'

* DFT naturally gives the essential ingredient for performing MD simulations.



First-Principles Molecular Dynamics based on DFT m, =1
h=1

1. For positions of nuclei, {R,...R\}, and solve DFT-KS equations
—, self-consistently

p(r')
Ay [

'+, (], () = £, (1)

Cc occ
S _ 2
5 p(r)= 2[y,(n)
S i
RS
2 2. Calculate force on each nucleus/ion:
S
ZZ.e Z,
F=-3V, < +fp(r;R)V e
: v

— 3. Integrate equation of motion for the nuclei: perform a time
step (At) and find new positions for the nuclei

MR (1)= F,(R(1))



Remark about Different Implementations in Practice

Numeric Atom-Centered Orbitals (NAO): discussed by V. Blum

Codes : FHI-aims

Gaussians Type Orbitals (GTO) :

Gaussian functions centered on atomic nuclei are used as basis set functions. Many
integrals can be calculated analytically.

Codes : GAUSSIAN, Q-Chem

Planewaves - Pseudopotential (PW-PP) :

Planewaves are used as basis set functions with “pseudo”-potentials to replace core
electrons.

Codes: Quantum-Espresso, VASP, Qbox/Qb@Il

Popular for FPMD - the forces are easy to implement.



Car Parrinello (extended Lagrangian) Molecular Dynamics: “CPMD”

VOLUME 55, NUMBER 22 PHYSICAL REVIEW LETTERS 25 NOVEMBER 1985

Unified Approach for Molecular Dynamics and Density-Functional Theory

R. Car
International School for Advanced Studies, Trieste, Italy

and

M. Parrinello

Dipartimento di Fisica Teorica, Universita di Trieste, Trieste, Italy, and
International School for Advanced Studies, Trieste, Italy
(Received 5 August 1985)

We present a unified scheme that, by combining molecular dynamics and density-functional
theory, profoundly extends the range of both concepts. Our approach extends molecular dynamics
beyond the usual pair-potential approximation, thereby making possible the simulation of both co-
valently bonded and metallic systems. In addition it permits the application of density-functional
theory to much larger systems than previously feasible. The new technique is demonstrated by the
calculation of some static and dynamic properties of crystalline silicon within a self-consistent pseu-
dopotential framework.

Review : Car-Parrinello Molecular Dynamics
Jurg Hutter, Wires — Computational
Molecular Science, 2, 513 (2012)

Popular codes for performing CPMD
CPMD, CP code (QE), Qbox, Qb@II, etc.

*CP2K does not have CPMD!

1985 Triesfe / By Thomas D. Kiihne



Car Parrinello extended Lagrangian Lagrange multiplier for

enforcing orthonormality

N

LCP(R,R;{I/J}= \%<¢‘¢> E { }R]+EAZJ(<?’U‘¢> )

I=

Fictitious mass parameter for electronic degrees of freedom.

Y.(r,1) are treated as if they are classical fields.

EV ‘lizli ‘+fp(r;R)VR[ %dr"'EAi,ij, <1/Jl.‘l/Jj>
d oL oL ) SE
dt a<1p ‘ < ‘ W/Ji(r’t)=‘6<w ‘+EA,-,J-‘1/JJ->
I J

— _ﬁKS‘wi>+zAi,j‘wj>



Why/when can CPMD work?

There needs to be “adiabatic” separation (no energy exchange) between artificial
electronic motion and real ionic/nuclear motion.

To achieve such, How do you find an appropriate fictitious electron parameter p ?

Characteristic frequency of the slowest “electronic motion” is related to HOMO-LUMO
energy gap, and it must be set higher than fastest nuclear/ionic motion.

1/2
min Egap max
1)) =~ >
e lon
u

Example: System with H atom: p~ 500 a.u.
At ~ 5-10 a.u. = 0.1-0.2 femto-seconds



Car Parrinello Molecular Dynamics in a nutshell

“The heart of the matter is the “on the fly”’ calculation of the potential energy surface

for nuclear motion, without performing a self-consistent diagonalization of the Kohn—
Sham Hamiltonian at each time step...

The Car—Parrinello approach has remarkable time stability, which derives from energy
conservation in the extended parameter space of electrons and nuclei...”

Roberto Car in “AB INITIO Molecular Dynamics: Dynamics and Thermodynamic
Properties” (2006)



Applications




Electron localization on CO, in Water

Injection of an extra electron:
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Electron Localization on CO, in water
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Density associate w/ the extra electron (spin density) -

Key observations

The electron dynamically localizes somewhat
around CO, as the bending angle fluctuates.

Large stochastic fluctuations prompt the electron to
localize further, and it reciprocally causes the angle
to become smaller as CO, anion.




A few selections of Challenges and Advanced Topics for FPMD

You have exciting opportunities to contribute and advance the field!



Challenge and Advanced Topic: Nuclear Quantum Effects (NQE)

Path integral (Pl) method allows us to model atomic nuclei as QM particles.

P
W\“ : An artificial neural network (ANN) was used to “machine-
%3;\7 PR ST: “i learn” FPMD simulation w/ meta-GGA (SCAN).
1 ',’ﬁx\\\ :ﬁ/‘% Yao and Kanai, J. Chem. Phys. 153, 044114 (2020)

// I Waaa -~
beads 2 3

Pair Correlation Function, g(r) :
Probability of finding another atom at a
given distance, r, from a particle.

g(r)
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Quantum nuclei
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Soper and Benmore, Phys. Rev. Lett., 101, 065502 (2008)




Challenge and Advanced Topic: “Rare Event” Problem

Si-Si ad-dimer rotation on Si(001) surface
VOLUME 77, NUMBER 12 PHYSICAL REVIEW LETTERS 16 SEPTEMBER 1996

Experimental and Theoretical Study of the Rotation of Si Ad-dimers on the Si(100) Surface

B.S. Swartzentruber,! A.P. Smith,? and H. Jénsson>>

Time-resolved STM
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Challenge and Advanced Topic: “Rare Event” Problem

How many MD steps do we need before observing a “single” transition event on
average in an MD simulation?

With a MD time step of At = 1 femto-sec, 10'° steps are needed !!!!
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L

L 00
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470

But, the transition itself takes place extremely fast.

|




Challenge and Advanced Topic: “Rare Event” Problem

Why not increase the MD time step ?

(1) Avery fast process (< 1 ps) when it happens. Needs a very good time resolution.
(2) Numerical integrator (e.g. Verlet) restricts the largest possible time step.

Rare-event problem
Unlikely to observe such a transition if the energy barrier is high.
Advanced methods such as

Nudged Elastic Band

String Method
Meta Dynamics, etc

are needed to find ”Minimum energy path” and/or Transition States.




Time-Dependent Density Functional Theory

Many-body dynamics is governed by time-dependent density!
0(8) = (¥(©O)[0|¥()) = Olp(t); ¥(to)]

Hohenberg-Kohn Theorem (1965): Phys. Rev. 136, B684 (1964)

One-to-one correspondence between the external potential and the ground-state
(equilibrium) density po(T).

po(r) cannot happen.

A fun read “A half century of density functional theory” A. Zangwill, Physics Today 68, 34 (2015)

Runge-Gross Theorem (1984):  Phys. Rev. Lett. 52, 997 (1984)

One-to-one correspondence between time-dependent density and time-dependent potential,
given the same initial many-body state at t,,.

LPz‘l(t)[qj(to)] > p (r,t) cannot happen.
W () [W(to)]




Kohn-Sham Ansatz

d
- ) t = _v ° i ) t
atp(r ) j(r, t)
j(r,t) = —;;Nfdrzfdr3 o [ dry{Pr(r,ry, .oy, V(L 1y, .. Ty, £) — VP (1, ... Ty, O)P(L, 1y, ... Ty, )]

A set of single-particle orbitals that yield the true density (Kohn-Sham system)

N
,0(1‘, t) = %f dkz fi,kld)i,k(r» t)lz |¢i,k(t)> = eik’r|ui,k(t)>
BZ ;
. 0 ) 2 / !
laqbi,k(r, t) = {%(—lv + A, (T, t)) + Veort (1, t) + [ dr 'Tr(ir’tl) + vy (T, t)} ¢ k(r,t)
Hys

N
j(r,t) = %f dkz G (L) (—IV + Agye (r, 1)) (1, £) + c. c.
BZ :



Quantum Dynamics via Time-Dependent Kohn-Sham Eq.

Energy functional as Constant-of-Motion

Elp@] = 55 | dk Y fi (8|17 + Aewe0)' a0}

+ [[ arar® (rl t)_”(r a2 + | P08 OVese 0 + Exc[p(O)]

Adiabatic approximation vy [p|(r,t) = vyc[p(t)](r, t)

GEO =35 [ &Y fuc (b Fuslo(©l] grouao) + c.c.

i

=0 when Agyt/ Veyt is time-independent

Schleife, et al. J. Chem. Phys. 137, 22A546 (2012)



Interaction w/ Electromagnetic Field

Gauge invariance for applied EM field

Aes(t) __( iV + A, D)+ ¢(r,0) +jdr'p(_ )| T Uxc(r, 1) = Z|r—R1(t)|

EM-field effect can be described either via A or ¢.

E=-Y$—-9% B=VxA

“Delta kick” - E-field is applied suddenly at t=0 (all frequencies).

Macroscopic current Conductivity
1 ro
. — lwt
J = [ drym o (@) = g | deet,(0
Dipole strength function (molecules) Dielectric function (extended systems)

S(w) = 4;T—Ca)Tr[Im Oy ()] elw)=1+ %Tr[aw(w)]



Great Success! : Optical absorption spectrum of Benzene
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Experimental

---- TDLDA

(0)]

Dipole strength
S

Energy (eV)

“Time-dependent local-density approximation in real time: Application to conjugated molecules”

Yabana and Bertsch, Int’l J. Quantum Chem. 75, 55 (1999)



The devil is the details: Exchange and Correlation (XC) Functional

vxc!

Heaven of Chemical Accuracy

p(™) ,|Vp(®)|, z(r), all g(r), ¢

p(r) ; IVp()], z(r), occ. ¢(r)

RPA and beyond
hybrids

p(™), [Vp(@)|, z(r) meta GGAs
p(r), [Vp(r)] GGAs

p(r) LDA

Hartree’s Earth

1.00

Hydrogen Chain
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PBE :
— TASK
— SCAN
= HSE
PBEO
= B3LYP ‘

— CAM-B3LYP
— - BSE@GW]| _

Reference

Energy (eV)

Real-Time TDDFT for Simulating Nonequilibrium Electron Dynamics (Perspective)

J. Xu, T. E. Carney, R. Zhou, C. Shepard, Y. Kanai

J. Am. Chem. Soc. 146, 5011 (2024)



https://pubs.acs.org/doi/full/10.1021/jacs.3c08226
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Application : Ag,, cluster at H-Si(111) surface
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Journal of Physics: Condensed Matter, 37, 045502 (2024)

J. Bost, C. Shepard and Y. Kanai


https://iopscience.iop.org/article/10.1088/1361-648X/ad8b8e

Excitation of Ag,, cluster at H-Si(111) surface
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Accounting for Electron Dynamics in Molecular Dynamics

In FPMD (both BOMD and CPMD?), electrons remain in the ground state of given
nucler positions; no quantum dynamics of electrons are included.

*Electron dynamics in CPMD is fictitious, not real quantum dynamics

Born Oppenheimer Molecular Dynamics MR, = —VRIEDFT [0o; R]

Ehrenfest Dynamics, with Real-time Time-Dependent DFT

N
MR, = _VRIEDFT lo(t); R] p(r,t) = édekai,kWi,k(F, t)|2

i

l_¢lk(r t) - {_(_lv +Aext(r t)) + vext(r t) + fd /P( |)+ XC(r t)} ¢lk(r t)



Ehrenfest Dynamics with RT-TDDFT

RT-TDDFT with MD for atomic nuclei (i.e. Ehrenfest Dynamics)

Coupled dynamics of quantum electrons and classical atomic nuclei

2 d .
M, ER,(t) = =V, (EPFT[p(t)D iaﬁbi(r: t) = Hgs(t);(x, t)

»>”

Electrons are “excited” with 8.75 eV photons.

Electron dynamics (i.e. excitation) induces the movement of classical atomic nuclei.

m )



